Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4absorber

2011 ◽  
Vol 21 (1) ◽  
pp. 72-76 ◽  
Author(s):  
Byungha Shin ◽  
Oki Gunawan ◽  
Yu Zhu ◽  
Nestor A. Bojarczuk ◽  
S. Jay Chey ◽  
...  
2013 ◽  
Vol 22 (1) ◽  
pp. 58-68 ◽  
Author(s):  
Lian Guo ◽  
Yu Zhu ◽  
Oki Gunawan ◽  
Tayfun Gokmen ◽  
Vaughn R. Deline ◽  
...  

2016 ◽  
Vol 4 (19) ◽  
pp. 7390-7397 ◽  
Author(s):  
Xin Zhao ◽  
Mingxuan Lu ◽  
Mark J. Koeper ◽  
Rakesh Agrawal

A monoamine–dithiol mixture is used to prepare homogeneous Cu(In, Ga)Se2 (CIGSe) molecular precursor solution, which yields a highly sulfur depleted CIGSe thin-film solar cell with a power conversion efficiency of 12.2%.


2017 ◽  
Vol 701 ◽  
pp. 901-908 ◽  
Author(s):  
Mingrui He ◽  
A.C. Lokhande ◽  
In Young Kim ◽  
U.V. Ghorpade ◽  
M.P. Suryawanshi ◽  
...  

2015 ◽  
Vol 3 (8) ◽  
pp. 4147-4154 ◽  
Author(s):  
Md. Anower Hossain ◽  
Zhang Tianliang ◽  
Lee Kian Keat ◽  
Li Xianglin ◽  
Rajiv R. Prabhakar ◽  
...  

An aqueous spray-pyrolysis approach for synthesizing Cu(In,Ga)(S,Se)2 thin film, which leads to 10.54% power conversion efficiency in solar cell, and shows ease of fabrication of films in large-scale at a much cheaper cost.


2020 ◽  
Author(s):  
Long Hu ◽  
Qian Zhao ◽  
Shujuan Huang ◽  
Jianghui Zheng ◽  
Xinwei Guan ◽  
...  

Abstract All-inorganic CsPbI3 perovskite quantum dots (QDs) have received intense research interest for photovoltaic applications because of the recently demonstrated higher power conversion efficiency compared to solar cells using other QD materials. These QD devices also exhibit good mechanical stability amongst various thin-film photovoltaic technologies. In this work, through developing a hybrid interfacial architecture consisting of CsPbI3 QD/PCBM heterojunctions, we report the formation of an energy cascade for efficient charge transfer at both QD heterointerfaces and QD/electron transport layer interfaces. The champion CsPbI3 QD solar cell has a best power conversion efficiency of 15.1%, which is among the highest report to date. Building on this strategy, we demonstrate the very first perovskite QD flexible solar cell with a record efficiency of 12.3%. A detailed morphological characterization reveals that the perovskite QD film can better retain structure integrity than perovskite bulk thin-film under external mechanical stress. This work is the first to demonstrate higher mechanical endurance of QD film compared to bulk thin-film, and highlights the importance of further research on high‐performance and flexible optoelectronic devices using solution-processed QDs.


2021 ◽  
Vol 01 (01) ◽  
pp. 56-57
Author(s):  
Galhenage A. Sewvandi ◽  
◽  
J.T.S.T. Jayawardane ◽  

Solar energy is a commonly used alternate source of energy and it can be utilized based on the principle of the photovoltaic effect. The photovoltaic effect converts sun energy into electrical energy using photovoltaic devices (solar cells). A solar cell device should have high efficiency and a long lifetime to be commercially beneficial. Presently, silicon and thin-film solar cells are widely employed. The crystalline solar cells are more efficient but they are also expensive. Thin-film solar cells are formed by placing one or more thin layers of photovoltaic materials on different substrates. Although these cells have a lower cost, they are also less efficient compared to Si-based solar cells. Organic-inorganic hybrid lead halide perovskite solar cells are one of the most promising low-cost power conversion efficiency technologies that could exceed the 26% threshold. However, the lack of environmental stability and of high lead toxicity are the main bottlenecks that impede the future industrialization and commercialization hybrid lead halide perovskite. Hence It is important to achieve high power conversion efficiency while also maintaining stability and non-toxicity in the development of new lead-free perovskite materials.


Author(s):  
Md. Fakhrul Islam ◽  
Nadhrah Md Yatim ◽  
Mohd Azman Hashim@Ismail

Copper Zinc Tin Sulfide (CZTS) solar cells have recently attracted attention as a potential low-cost earth abundant replacement for CIGS cells. This is due to their constituent’s Zn and Sn are non-toxic and earth-abundant compare to the elements of In and Ga in CIGS. Thus, aiming to analyse solar cells free from the environmental contaminant, CZTS is viewed as a potential candidate as the absorber for the next generation thin film solar cells. However, the conversion efficiency of CZTS based solar cells reported which is relatively low (highest conversion efficiency recorded is 12.5%) from the theoretical conversion efficiency limit of 32.2%. This is due to the low fill factor (FF), open circuit voltage (Voc) and current density (Jsc). In this study analysis of the different CZTS based solar cells and its synthesis methods will be reviewed. The effect of the compositional change and various structure in the CZTS, different buffer layers with their interfaces are thoroughly studied. The challenges regarding improving the conversion efficiency of CZTS solar cells and their future in the thin film solar cell application are discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
S. Wageh ◽  
Mahfoudh Raïssi ◽  
Thomas Berthelot ◽  
Matthieu Laurent ◽  
Didier Rousseau ◽  
...  

AbstractPoly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) mixed with single-wall nanotubes (SWNTs) (10:1) and doped with (0.1 M) perchloric acid (HClO4) in a solution-processed film, working as an excellent thin transparent conducting film (TCF) in organic solar cells, was investigated. This new electrode structure can be an outstanding substitute for conventional indium tin oxide (ITO) for applications in flexible solar cells due to the potential of attaining high transparency with enhanced conductivity, good flexibility, and good durability via a low-cost process over a large area. In addition, solution-processed vanadium oxide (VOx) doped with a small amount of PEDOT-PSS(PH1000) can be applied as a hole transport layer (HTL) for achieving high efficiency and stability. From these viewpoints, we investigate the benefit of using printed SWNTs-PEDOT-PSS doped with HClO4 as a transparent conducting electrode in a flexible organic solar cell. Additionally, we applied a VOx-PEDOT-PSS thin film as a hole transporting layer and a blend of PTB7 (polythieno[3,4-b] thiophene/benzodithiophene): PC71BM (phenyl-C71-butyric acid methyl ester) as an active layer in devices. Zinc oxide (ZnO) nanoparticles were applied as an electron transport layer and Ag was used as the top electrode. The proposed solar cell structure showed an enhancement in short-circuit current, power conversion efficiency, and stability relative to a conventional cell based on ITO. This result suggests a great carrier injection throughout the interfacial layer, high conductivity and transparency, as well as firm adherence for the new electrode.


Sign in / Sign up

Export Citation Format

Share Document