Applications of a novel detector for pencil beam scanning proton therapy beam quality assurance

Author(s):  
Pei-Ying Yang ◽  
Yang-Wei Hsieh ◽  
Chen-Lin Kang ◽  
Chin-Dar Tseng ◽  
Chih-Hsueh Lin ◽  
...  

This study utilized a new type of detector, the CROSS II (Liverage Biomedical Inc., Taiwan), to perform a beam quality assurance (QA) procedure on a Sumitomo (Sumitomo Heavy Industries, Inc., Japan) pencil beam linear scanning proton therapy machine. The Cross II can monitor proton Pristine Bragg peak range, beam width, beam size, beam position, and scanning speed. All the data presented here were collected during a time span of over one year. The accuracy of the QA program could be verified if all the QA items were tested stably and within the programmed tolerances. Our results showed that the proton range remained within the [Formula: see text] mm tolerance, with the majority of measurements within [Formula: see text] mm, [Formula: see text] mm for spot size, 1.5 mm for spot position, and [Formula: see text]% for scanning speed. We found that the CROSS II detector is in high precise and steady state with highly efficient. Our proton therapy system was also proven to be in an accurate and reliable condition according to our QA results.

2015 ◽  
Vol 16 (3) ◽  
pp. 270-276 ◽  
Author(s):  
Liyong Lin ◽  
Minglei Kang ◽  
Timothy D. Solberg ◽  
Thierry Mertens ◽  
Christian Baumer ◽  
...  

2019 ◽  
Vol 26 (5) ◽  
pp. 1489-1495
Author(s):  
Andreas Koch ◽  
Johannes Risch ◽  
Wolfgang Freund ◽  
Theophilos Maltezopoulos ◽  
Marc Planas ◽  
...  

X-ray photon beam diagnostic imagers are located at 24 positions in the European XFEL beam transport system to characterize the X-ray beam properties, and to give feedback for tuning and optimization of the electron acceleration and orbit, the undulators, and the X-ray optics. One year of commissioning allowed experience to be gained with these imagers, which will be reported here. The sensitive Spontaneous Radiation imager is useful for various investigations in spontaneous radiation mode: for undulator adjustments and for low-signal imaging applications. The high-resolution Free-Electron Laser imager, 10 µm spatial resolution, is extensively used for the monitoring of beam position, spot size and shape, gain curve measurements, and also for beam-intensity monitoring. The wide field-of-view pop-in monitors (up to 200 mm) are regularly used for alignment and tuning of the various X-ray optical components like mirrors, slits and monochromators, and also for on-line beam control of a stable beam position at the instruments. The Exit Slit imager after the soft X-ray monochromator provides spectral information of the beam together with multi-channel plate based single-pulse gating. For particular use cases, these special features of the imagers are described. Some radiation-induced degradation of scintillators took place in this initial commissioning phase, providing useful information for better understanding of damage thresholds. Visible-light radiation in the beam pipe generated by upstream bending magnets caused spurious reflections in the optical system of some of the imagers which can be suppressed by aluminium-coated scintillating screens.


2008 ◽  
Vol 35 (9) ◽  
pp. 3889-3894 ◽  
Author(s):  
Bijan Arjomandy ◽  
Narayan Sahoo ◽  
Xiaoning Ding ◽  
Michael Gillin

2016 ◽  
Vol 118 ◽  
pp. S44-S45 ◽  
Author(s):  
F. Gagnon-Moisan ◽  
R. van der Meer ◽  
Z. Chowdhuri ◽  
M. Eichin ◽  
S. Koenig ◽  
...  

2021 ◽  
Vol 8 (1) ◽  
pp. 73-83
Author(s):  
Daniel E. Hyer ◽  
Laura C. Bennett ◽  
Theodore J. Geoghegan ◽  
Martin Bues ◽  
Blake R. Smith

Abstract Purpose The development of collimating technologies has become a recent focus in pencil beam scanning (PBS) proton therapy to improve the target conformity and healthy tissue sparing through field-specific or energy-layer–specific collimation. Given the growing popularity of collimators for low-energy treatments, the purpose of this work was to summarize the recent literature that has focused on the efficacy of collimators for PBS and highlight the development of clinical and preclinical collimators. Materials and Methods The collimators presented in this work were organized into 3 categories: per-field apertures, multileaf collimators (MLCs), and sliding-bar collimators. For each case, the system design and planning methodologies are summarized and intercompared from their existing literature. Energy-specific collimation is still a new paradigm in PBS and the 2 specific collimators tailored toward PBS are presented including the dynamic collimation system (DCS) and the Mevion Adaptive Aperture. Results Collimation during PBS can improve the target conformity and associated healthy tissue and critical structure avoidance. Between energy-specific collimators and static apertures, static apertures have the poorest dose conformity owing to collimating only the largest projection of a target in the beam's eye view but still provide an improvement over uncollimated treatments. While an external collimator increases secondary neutron production, the benefit of collimating the primary beam appears to outweigh the risk. The greatest benefit has been observed for low- energy treatment sites. Conclusion The consensus from current literature supports the use of external collimators in PBS under certain conditions, namely low-energy treatments or where the nominal spot size is large. While many recent studies paint a supportive picture, it is also important to understand the limitations of collimation in PBS that are specific to each collimator type. The emergence and paradigm of energy-specific collimation holds many promises for PBS proton therapy.


Sign in / Sign up

Export Citation Format

Share Document