Asymmetric bidirectional quantum teleportation via six-qubit partially entangled state

Author(s):  
Jinwei Wang ◽  
Liping Huang

In this paper, an asymmetric bidirectional controlled quantum teleportation via a six-qubit partially entangled state is given, in which Alice wants to transmit a two-qubit entangled state to Bob and Bob wants to transmit a single-qubit state to Alice on the same time. Although the six-qubit state as quantum channel is partially entangled, the teleportation is implemented deterministically. Furthermore, only Bell-state measurements, single-qubit measurements and some unitary operations are needed in the scheme.

2020 ◽  
Vol 35 (25) ◽  
pp. 2050204
Author(s):  
Shiya Sun ◽  
Huisheng Zhang

In this paper, we present a deterministic four-party quantum cyclic controlled teleportation (QCYCT) scheme, by using a multi-qubit partially entangled state as the quantum channel. In this scheme, Alice can teleport an arbitrary [Formula: see text]-qubit state to Bob, Bob can teleport an arbitrary [Formula: see text]-qubit state to Charlie and Charlie can teleport an arbitrary [Formula: see text]-qubit state to Alice under the control of the supervisor David. We utilize rotation gate, Hadamard gates and controlled-NOT (CNOT) gates to construct the multi-qubit partially entangled channel. Only Bell-state measurements, single-qubit von-Neumann measurement and proper unitary operations are required in this scheme, which can be realized in practice easily based on the present quantum experiment technologies. The direction of cyclic controlled teleportation of arbitrary multi-qubit states can also be changed by altering the quantum channel. Analysis demonstrates that the success probability of the proposed scheme can still reach 100% although the quantum channel is non-maximally entangled. Furthermore, the proposed four-party scheme can be generalized into the case involving [Formula: see text] correspondents, which is more suitable for quantum communication networks. We also calculate the intrinsic efficiency and discuss the security of the proposed scheme. Compared with the existing QCYCT schemes which realized cyclic controlled teleportation of arbitrary single-qubit states, specific two-qubit and three-qubit states, the proposed scheme is of general significance.


2021 ◽  
pp. 2150249
Author(s):  
Vikram Verma

In this paper, by utilizing a nine-qubit entangled state as a quantum channel, we propose new schemes for symmetric and asymmetric cyclic controlled quantum teleportation (CYCQT). In our proposed schemes, four participants Alice, Bob, Charlie and David teleport their unknown quantum states cyclically among themselves with the help of a controller Eve. No participants can reconstruct the original states sent from the respective senders without the permission of the controller. Also, by considering same nine-qubit entangled state as a quantum channel, we propose a generalized scheme for CYCQT of multi-qubit states. In contrast to the previous CYCQT schemes involving three communicators and a controller, there are four communicators and a controller in the proposed schemes. Also, compared with previous CYCQT schemes, our proposed CYCQT schemes require less consumption of quantum resource and the intrinsic efficiency of the generalized scheme increases with the increase of number of qubits in the information states.


2020 ◽  
Vol 34 (28) ◽  
pp. 2050261
Author(s):  
Vikram Verma

We propose a novel scheme for faithful bidirectional quantum teleportation (BQT) in which Alice can transmit an unknown N-qubit entangled state to Bob and at the same time Bob can transmit an unknown M-qubit entangled state to Alice by using a four-qubit entangled G-state as a quantum channel. We also propose a new scheme for cyclic QT of multi-qubit entangled states by using two G-states as a quantum channel. The advantage of our schemes is that it seems to be much simpler and requires reduced number of qubits in quantum channel as compared with the other proposed schemes.


2011 ◽  
Vol 09 (02) ◽  
pp. 763-772 ◽  
Author(s):  
YI-YOU NIE ◽  
YUAN-HUA LI ◽  
JUN-CHANG LIU ◽  
MING-HUANG SANG

We demonstrate that a genuine six-qubit entangled state introduced by Tapiador et al. [J. Phys. A42 (2009) 415301] can be used to realize the deterministic controlled teleportation of an arbitrary three-qubit state by performing only the Bell-state measurements.


2013 ◽  
Vol 27 (04) ◽  
pp. 1350030 ◽  
Author(s):  
MING-QIANG BAI ◽  
JIA-YIN PENG ◽  
ZHI-WEN MO

In physics experiments, it is very difficult to realize directly using high-dimensional unitary operations. In order to decrease or avoid the shortage during the teleportation process based on probabilistic channel, we propose a new scheme to reconstruct a deterministic teleportation eight-qubit channel using Bell-state measurements based on the probabilistic channel, which replaces high-dimensional unitary operations. In our scheme, a new quantum channel without alterable parameters replaces the general quantum channel with parameters as probabilistic teleportation. It shows that if we choose an eight-qubit probabilistic channel to construct deterministic channel, the relevant parameters of the eight-qubit probabilistic channel can be avoided. Thus, in quantum teleportation process, quantum channel can be chosen as a deterministic channel. This shows that our scheme makes real experiments more suitable.


2020 ◽  
pp. 2150145
Author(s):  
Vikram Verma

In 2017, Chen et al. [Quantum Inf. Process. 16 (2017) 201] proposed a scheme for cyclic quantum teleportation (CYQT) of three single-qubit information states among three participants by using six-qubit entangled state as a quantum channel. Following the work of Chen et al., we propose a new scheme for CYQT in which four participants cyclically teleport four arbitrary single-qubit information states among themselves by using two [Formula: see text]-states as a quantum channel. In our scheme, reverse CYQT can also be realized throughout changing the qubit pairs to be measured by each participant. We also generalize our scheme for CYQT of [Formula: see text]-qubit entangled states.


2011 ◽  
Vol 09 (supp01) ◽  
pp. 389-403 ◽  
Author(s):  
ANIRBAN PATHAK ◽  
ANINDITA BANERJEE

An efficient and economical scheme is proposed for the perfect quantum teleportation of n-qubit non-maximally entangled state of generalized Bell-type. A Bell state is used as the quantum channel in the proposed scheme. It is also shown that the controlled teleportation of this n-qubit state can be achieved by using a GHZ state or a GHZ-like state as quantum channel. The proposed schemes are economical because for the perfect and controlled teleportation of n-qubit non-maximally entangled state of generalized Bell-type, we only need a Bell state and a tripartite entangled state respectively. It is also established that there exists a family of 12 orthogonal tripartite GHZ-like states which can be used as quantum channel for controlled teleportation. The proposed protocols are critically compared with the existing protocols.


Sign in / Sign up

Export Citation Format

Share Document