STUDY OF THE OPTICAL ABSORPTION OF Cu CLUSTERS IN THE Cu/ZnO SYSTEM

2001 ◽  
Vol 15 (17n19) ◽  
pp. 625-629 ◽  
Author(s):  
O. VAZQUEZ-CUCHILLO ◽  
A. BAUTISTA-HERNANDEZ ◽  
U. PAL ◽  
L. MEZA-MONTES

Optical absorption of Cu/ZnO composite films grown by r.f. sputtering are presented. We calculated the optical absorption spectra based on a colloidal-copper model with mean-free-path (MFP) and size corrections to the bulk dielectric constant. All effective-medium theory is used to analyze the presence of the coated nanoparticles and the ZnO matrix. The parameters of the model are fitted to reproduce the experimental spectra.

2007 ◽  
Vol 336-338 ◽  
pp. 2575-2578 ◽  
Author(s):  
Yun Zhang ◽  
Bo Ping Zhang ◽  
Li Shi Jiao ◽  
Xiang Yang Li ◽  
Hiroshi Masumoto ◽  
...  

Au/SiO2 nano-composite multilayer thin films with different thickness were prepared on a quartz substrate by magnetron plasma sputtering. The microstructure, morphology and optical properties of the films were investigated by using TEM and optical absorption spectra. [Au/SiO2]×5 and [Au/SiO2] × 11 multilayer thin films have well-defined interface. The thickness of the multilayer was 60nm and 130 nm for the thin films with 5 and 11 layers, respectively. The optical absorption peaks due to the surface plasma resonance appeared at a wavelength of 560 nm for the both [Au/SiO2]×5 and [Au/SiO2]×11 thin films. The intensity of the absorption peak increased with increasing numbers of deposition layers. The optical absorption spectra of Au/SiO2 multilayer thin films are well agreement with the theoretical optical absorption spectra calculated from rewritten Maxwell–Garnett effective medium theory.


Author(s):  
Felix Henneke ◽  
Lin Lin ◽  
Christian Vorwerk ◽  
Claudia Draxl ◽  
Rupert Klein ◽  
...  

2014 ◽  
Vol 548-549 ◽  
pp. 124-128 ◽  
Author(s):  
S. Insiripong ◽  
S. Kaewjeang ◽  
U. Maghanemi ◽  
H.J. Kim ◽  
N. Chanthima ◽  
...  

In this work, properties of Nd3+ in Gd2O3-CaO-SiO2-B2O3 glass systems with composition 25Gd2O3-10CaO-10SiO2-(55-x)B2O3-xNd2O3 where x = 0.0, 0.5, 1.0, 1.5, 2.0 and 2.5 mol% were investigated. The optical absorption spectra show peaks at 4F3/2 (877 nm) , 4F5/2+2H9/2 (802 nm), 4F7/2+4S3/2 (743 nm), 4F9/2 (682 nm), 2H11/2 (627 nm), 2G7/2 +4G5/2 (582 nm), 4G7/2 +2K13/2 (527 nm), 4G11/2 (481 nm), 2P1/2 (427 nm) and 2L15/2 + 4D1/2 + 1I11/2+ 4D5/2+ 4D3/2 (355 nm) reflecting the Nd3+ ions in glass matrices. The densities were increased with increasing of Nd2O3 concentration. This indicates the increase of the molecular weight by the replacement of B2O3 with a heavier Nd2O3 oxide in the glass. The upconversion luminescence spectra show bands at 393 nm for all Nd2O3 concentration and the strongest intensity from 2.5 % mol of Nd2O3 was obtained. For NIR luminescence, the intensity of Nd3+ emission spectra increases with increasing concentrations of Nd3+ up to 1.5 mol% and beyond 1.5 mol% the concentration quenching is observed.


1962 ◽  
Vol 40 (10) ◽  
pp. 1480-1489 ◽  
Author(s):  
J. W. Bichard ◽  
J. C. Giles

The optical absorption spectra of arsenic and phosphorus donor impurities in silicon have been studied under conditions of improved resolution. Absorption lines due to transitions from the impurity ground state to the excited states 2p0, 2p±, 3p0, 3p±, 4p0, 4 p±, and 5p0, and 5p± have been observed at 4.2° K. The relative intensities of some of these absorption lines are compared with existing experimental and theoretical estimates. The contribution of instrumental broadening to the observed line widths is assessed and natural line widths are estimated. The estimates indicate values for the natural line widths which are much less than those previously reported. For phosphorus impurity, the natural line widths are estimated to be less than 0.08 × 10−3 electron volts full width at half-maximum. The possibility of concentration broadening is discussed in connection with the arsenic data.


Sign in / Sign up

Export Citation Format

Share Document