CROSSOVER FROM RABI TO JOSEPHSON DYNAMICS IN TWO-COUPLED BOSE–EINSTEIN CONDENSATES AS A PHASE TRANSITION PROCESS

2002 ◽  
Vol 16 (27) ◽  
pp. 1021-1026 ◽  
Author(s):  
ARANYABHUTI BHATTACHERJEE ◽  
MAN MOHAN

Crossover from individual Rabi dynamics to collective Josephson dynamics in two-coupled Bose–Einstein condensates is studied as a phase transition process. We obtain the critical value of the parameter Λ (ratio of the mean field energy to the tunneling matrix element) for the π-phase oscillations from the non-linear perturbation expansion of small oscillations around the saddle point of the first-order Euclidean (imaginary time) differential equations for polar and azimuthal angles θ and ϕ without approximation.

2018 ◽  
Vol 427 ◽  
pp. 304-311 ◽  
Author(s):  
Yifan Meng ◽  
Kang Huang ◽  
Zhou Tang ◽  
Xiaofeng Xu ◽  
Zhiyong Tan ◽  
...  

Langmuir ◽  
2016 ◽  
Vol 32 (26) ◽  
pp. 6691-6700 ◽  
Author(s):  
Zhangxin Ye ◽  
Youcheng Li ◽  
Zesheng An ◽  
Peiyi Wu

Author(s):  
Longjian Li ◽  
Jianbang Zeng ◽  
Quan Liao ◽  
Wenzhi Cui

A new lattice Boltzmann model, which is based on Shan-Chen (SC) model, is proposed to describe liquid-vapor phase transitions. The new model is validated through simulation of the one-component phase transition process. Compared with the simulation results of van der Waals fluid and the Maxwell equal-area construction, the results of new model are closer to the analytical solutions than those of SC model and Zhang model. Since the range of temperature and the maximum density ratio are increased, and the value of maximum spurious current is between those of SC and Zhang models, it is believed that this new model has better stability than SC and Zhang models. Therefore, the application scope of this new model is expanded. According to the principle of corresponding states in Engineering Thermodynamics, the simulations of water and ammonia phase transition process are implemented by using this new model with different equations of state. Compared to the experimental data of water and ammonia, the results show that the Peng-Robinson equation of state is more suitable to describe the water, ammonia and other substances phase transition process. Therefore, these simulation results have great significance for the real engineering applications.


2009 ◽  
Vol 54 (24) ◽  
pp. 4596-4603 ◽  
Author(s):  
JianBang Zeng ◽  
LongJian Li ◽  
Quan Liao ◽  
WenZhi Cui ◽  
QingHua Chen ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (101) ◽  
pp. 83139-83143 ◽  
Author(s):  
Huafang Zhang ◽  
Quanjun Li ◽  
Pengfei Shen ◽  
Qing Dong ◽  
Bo Liu ◽  
...  

Micro-sized rods show a lower phase transition temperature than nano-sized rods, and this is interpreted on the basis of nucleating defects.


2006 ◽  
Vol 89 (2) ◽  
pp. 021904 ◽  
Author(s):  
X. P. Wang ◽  
D. Li ◽  
Q. F. Fang ◽  
Z. J. Cheng ◽  
G. Corbel ◽  
...  

2012 ◽  
Vol 22 (09) ◽  
pp. 1250209 ◽  
Author(s):  
L. P. KARAKATSANIS ◽  
G. P. PAVLOS ◽  
D. S. SFIRIS

In this work, we present the coexistence of self-organized criticality (SOC) and low-dimensional chaos at solar activity with results obtained by using the intermittent turbulence theory, the nonextensive q-statistics of Tsallis as well as the singular value decomposition analysis. Particularly, we show the independent dynamics of sunspot system related to the convection zone of sun and the solar flare system related to the lower solar atmosphere. However, both systems reveal nonequilibrium phase transition process from a high-dimensional intermittent turbulence state with SOC profile to a low-dimensional and chaotic intermittent turbulence state. The high-dimensional SOC state in both dynamical systems underlying the sunspot and solar flare signal is related with low q-values and low Flatness values (F) while the low-dimensional chaotic state is related with higher q-values and Flatness F-values. The higher q- and F-values reveal strong character of long-range correlations corresponding to system-wide global process while the lower q- and F-values reveal scale invariant local avalanche process. Also, the high-dimensional SOC state corresponds to second order nonequilibrium critical phase transition process while the low-dimensional chaotic state corresponds to first order nonequilibrium phase transition process. Finally, for both dynamics underlying sunspot index and solar flare, at both states of phase transition process, the multiscale and multifractal character was found to exist but with different profile or strength.


Sign in / Sign up

Export Citation Format

Share Document