scholarly journals EXACT SOLUTIONS TO THE SPIN-2 GROSS–PITAEVSKII EQUATIONS

2012 ◽  
Vol 27 (02) ◽  
pp. 1350013 ◽  
Author(s):  
ZHI-HAI ZHANG ◽  
YONG-KAI LIU ◽  
SHI-JIE YANG

We present several exact solutions to the coupled nonlinear Gross–Pitaevskii equations which describe the motion of the one-dimensional spin-2 Bose–Einstein condensates. The nonlinear density–density interactions are decoupled by making use of the properties of Jacobian elliptical functions. The distinct time factors in each hyperfine state implies a "Lamor" procession in these solutions. Furthermore, exact time-evolving solutions to the time-dependent Gross–Pitaevskii equations are constructed through the spin-rotational symmetry of the Hamiltonian. The spin-polarizations and density distributions in the spin-space are analyzed.

2012 ◽  
Vol 67 (3-4) ◽  
pp. 141-146 ◽  
Author(s):  
Zhenyun Qina ◽  
Gui Mu

The Gross-Pitaevskii equation (GPE) describing the dynamics of a Bose-Einstein condensate at absolute zero temperature, is a generalized form of the nonlinear Schr¨odinger equation. In this work, the exact bright one-soliton solution of the one-dimensional GPE with time-dependent parameters is directly obtained by using the well-known Hirota method under the same conditions as in S. Rajendran et al., Physica D 239, 366 (2010). In addition, the two-soliton solution is also constructed effectively


2006 ◽  
Vol 20 (15) ◽  
pp. 2189-2221 ◽  
Author(s):  
K. CH. CHATZISAVVAS ◽  
S. E. MASSEN ◽  
CH. C. MOUSTAKIDIS ◽  
C. P. PANOS

An overview of the Bose–Einstein condensation of correlated atoms in a trap is presented by examining the effect of interparticle correlations to one- and two-body properties of the above systems at zero temperature in the framework of the lowest order cluster expansion. Analytical expressions for the one- and two-body properties of the Bose gas are derived using Jastrow-type correlation function. In addition numerical calculations of the natural orbitals and natural occupation numbers are also carried out. Special effort is devoted for the calculation of various quantum information properties including Shannon entropy, Onicescu informational energy, Kullback–Leibler relative entropy and the recently proposed Jensen–Shannon divergence entropy. The above quantities are calculated for the trapped Bose gases by comparing the correlated and uncorrelated cases as a function of the strength of the short-range correlations. The Gross–Piatevskii equation is solved, giving the density distributions in position and momentum space, which are employed to calculate quantum information properties of the Bose gas.


Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 65-68 ◽  
Author(s):  
Bulent Kilic ◽  
Mustafa Inc ◽  
Dumitru Baleanu

AbstractThis paper integrates dispersive optical solitons in special optical metamaterials with a time dependent coefficient. We obtained some optical solitons of the aforementioned equation. It is shown that the examined dependent coefficients are affected by the velocity of the wave. The first integral method (FIM) and ansatz method are applied to reach the optical soliton solutions of the one-dimensional nonlinear Schrödinger’s equation (NLSE) with time dependent coefficients.


2020 ◽  
Vol 35 (03) ◽  
pp. 2040005 ◽  
Author(s):  
M. Bordag

We investigate Bose-Einstein condensation of a gas of non-interacting Bose particles moving in the background of a periodic lattice of delta functions. In the one-dimensional case, where one has no condensation in the free case, we showed that this property persist also in the presence of the lattice. In addition we formulated some conditions on the spectral functions which would allow for condensation.


2002 ◽  
Vol 12 (07) ◽  
pp. 1667-1674 ◽  
Author(s):  
EDSON D. LEONEL ◽  
J. KAMPHORST LEAL DA SILVA ◽  
S. OLIFFSON KAMPHORST

We study the one-dimensional logistic map with control parameter perturbed by a small periodic function. In the pure constant case, scaling arguments are used to obtain the exponents related to the relaxation of the trajectories at the exchange of stability, period-doubling and tangent bifurcations. In particular, we evaluate the exponent z which describes the divergence of the relaxation time τ near a bifurcation by the relation τ ~ | R - Rc |-z. Here, R is the control parameter and Rc is its value at the bifurcation. In the time-dependent case new attractors may appear leading to a different bifurcation diagram. Beside these new attractors, complex attractors also arise and are responsible for transients in many trajectories. We obtain, numerically, the exponents that characterize these transients and the relaxation of the trajectories.


Sign in / Sign up

Export Citation Format

Share Document