Review on the degradation and device physics of quantum dot solar cells

2015 ◽  
Vol 29 (Supplement 1) ◽  
pp. 1530008 ◽  
Author(s):  
Elham N. Afshar ◽  
Rasoul Rouhi ◽  
Nima E. Gorji

Briefly, we reviewed the latest progress in energy conversion efficiency and degradation rate of the quantum dot (QD) solar cells. QDs are zero dimension nanoparticles with tunable size and accordingly tunable band gap. The maximum performance of the most advanced QD solar cells was reported to be around 10%. Nevertheless, majority of research groups do not investigate the stability of such devices. QDs are cheaper replacements for silicon or other thin film materials with a great potential to significantly increase the photon conversion efficiency via two ways: (i) creating multiple excitons by absorbing a single hot photon, and (ii) formation of intermediate bands (IBs) in the band gap of the background semiconductor that enables the absorption of low energy photons (two-step absorption of sub-band gap photons). Apart from low conversion efficiency, QD solar cells also suffer from instability under real operation and stress conditions. Strain, dislocations and variation in size of the dots (under pressure of the other layers) are the main degradation resources. While some new materials (i.e. perovskites) showed an acceptable high performance, the QD devices are still inefficient with an almost medium rate of 4% (2010) to 10% (2015).

2015 ◽  
Vol 737 ◽  
pp. 119-122 ◽  
Author(s):  
Tong Yu Wang ◽  
Peng Wang ◽  
He Lin Wang ◽  
Tie Qiang Zhang

This essay employed the "successive ion layer adsorption and reaction (SILAR)"technology to form PbSe/CdSe core/shell.We use the Pbse/CdSe core/shell replaced PbSe nanocrystals and obtained one new quantum dot solar cells of the inorganic.This new solar cells constituted by the metal oxide films retain the photoelectric conversion efficiency of quantum dot solar cells.At the same time,the stability of the new solar cells is tremendously improved with the oxidation resistance of inorganic oxide.Finally,when Jsc=25.2mA/cm2and Voc=0.36V ,we can conclude the conversion efficiency of the solar cell can be evaluated as 3.929%.


2015 ◽  
Vol 107 (10) ◽  
pp. 103902 ◽  
Author(s):  
Darren C. J. Neo ◽  
Samuel D. Stranks ◽  
Giles E. Eperon ◽  
Henry J. Snaith ◽  
Hazel E. Assender ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (87) ◽  
pp. 83802-83807 ◽  
Author(s):  
Yu Hou ◽  
Shuang Yang ◽  
Chunzhong Li ◽  
Huijun Zhao ◽  
Hua Gui Yang

An energy conversion efficiency of 8.31% is reached by using a cemented photoanode for dye-sensitized solar cells, attaining a 31.1% improvement over the standard Degussa P25 sample.


2019 ◽  
Vol 12 (01) ◽  
pp. 1850090
Author(s):  
Zhou Liu ◽  
Zhuoyin Peng ◽  
Jianlin Chen ◽  
Wei Li ◽  
Jian Chen ◽  
...  

Cu2GeSe3 quantum dot is introduced to instead of non-toxic CuInSe2 as a sensitizer for solar cells, which is employed to enhance the photovoltaic performance. Cu2GeSe3 quantum dots with various sizes are prepared by thermolysis process, which are employed for the fabrication of quantum dot-sensitized solar cells (QDSSC) according to assembly linking process. The optical absorption properties of the Cu2GeSe3 quantum dot-sensitized photo-electrodes have been obviously enhanced by the size optimization of quantum dots, which are better than that of CuInSe2-based photo-electrodes. Due to the balance on the deposition quantity and charge transfer property of the quantum dots, 3.9[Formula: see text]nm-sized Cu2GeSe3 QDSSC exhibits the highest current density value and incident photon conversion efficiency response, which result in a higher photovoltaic conversion efficiency than that of CuInSe2 QDSSC. The modulation of Cu2GeSe3 QDs will further improve the performance of photovoltaic devices.


2020 ◽  
Vol 12 (44) ◽  
pp. 49840-49848
Author(s):  
Chandan Mahajan ◽  
Ashish Sharma ◽  
Arup K. Rath

2015 ◽  
Vol 51 (9) ◽  
pp. 1732-1735 ◽  
Author(s):  
Vicente M. Blas-Ferrando ◽  
Javier Ortiz ◽  
Victoria González-Pedro ◽  
Rafael S. Sánchez ◽  
Iván Mora-Seró ◽  
...  

The power conversion efficiency of CdSe and CdS quantum dot sensitized solar cells is enhanced up to 45% for CdSe and 104% for CdS by passivation with an asymmetrically disulfide substituted phthalocyanine.


Sign in / Sign up

Export Citation Format

Share Document