Dynamics of coherence under Markovian and non-Markovian environments

2017 ◽  
Vol 31 (35) ◽  
pp. 1750329 ◽  
Author(s):  
Zhong-Xiao Wang ◽  
Teng Ma ◽  
Shu-Hao Wang ◽  
Tie-Jun Wang ◽  
Chuan Wang

The behavior of quantum coherence is studied under Markovian and non-Markovian dynamics for open quantum systems. For single qubit systems, we show that the coherence depending on the off-diagonal elements of the density matrix is the upper bound of the coherence depending on the relative entropy under both Markovian and non-Markovian processes. For two-qubit systems, in both Markovian and non-Markovian processes, quantum discord and coherence show less sensitivity to the initial state than quantum entanglement. We also find that the quantum discord has similar behaviors with coherence under both Markovian and non-Markovian dynamics.

2012 ◽  
Vol 27 (01n03) ◽  
pp. 1345054 ◽  
Author(s):  
JIN-SHI XU ◽  
CHUAN-FENG LI

Open quantum systems have attracted great attention, since inevitable coupling between quantum systems and their environment greatly affects the features of interest of these systems. Quantum discord, is a measure of the total nonclassical correlation in a quantum system that includes, but is not exclusive to, the distinct property of quantum entanglement. Quantum discord can exist in separated quantum states and plays an important role in many fundamental physics problems and practical quantum information tasks. There have been numerous investigations on quantum discord and its counterpart classical correlation. This short review focuses on highlighting the system–environment dynamics of two-qubit quantum discord and the influence of initial system–environment correlations on the dynamics of open quantum systems. The external control effect on the dynamics of open quantum systems are involved. Several related experimental works are discussed.


2018 ◽  
Vol 173 ◽  
pp. 01006 ◽  
Author(s):  
Aurelian Isar

We describe the generation of quantum correlations (entanglement, discord and steering) in a system composed of two coupled non-resonant bosonic modes immersed in a common thermal reservoir, in the framework of the theory of open systems. We show that for separable initial squeezed thermal states entanglement generation may take place, for definite values of squeezing parameter, average photon numbers, temperature of the thermal bath, dissipation constant and strength of interaction between the two bosonic modes. We also show that for initial uni-modal squeezed states Gaussian discord can be generated for all non-zero values of the strength of interaction between the modes. Likewise, for an initial separable state, a generation of Gaussian steering may take place temporarily, for definite values of the parameters characterizing the initial state and the thermal environment, and the strength of coupling between the two modes.


Quantum ◽  
2020 ◽  
Vol 4 ◽  
pp. 336 ◽  
Author(s):  
Sahar Alipour ◽  
Aurelia Chenu ◽  
Ali T. Rezakhani ◽  
Adolfo del Campo

A universal scheme is introduced to speed up the dynamics of a driven open quantum system along a prescribed trajectory of interest. This framework generalizes counterdiabatic driving to open quantum processes. Shortcuts to adiabaticity designed in this fashion can be implemented in two alternative physical scenarios: one characterized by the presence of balanced gain and loss, the other involves non-Markovian dynamics with time-dependent Lindblad operators. As an illustration, we engineer superadiabatic cooling, heating, and isothermal strokes for a two-level system, and provide a protocol for the fast thermalization of a quantum oscillator.


2015 ◽  
Vol 22 (02) ◽  
pp. 1550008
Author(s):  
A. Werpachowska

We present the reduced operator approximation: a simple, physically transparent and computationally efficient method of modelling open quantum systems. It employs the Heisenberg picture of the quantum dynamics, which allows us to focus on the system degrees of freedom in a natural and easy way. We describe different variants of the method, low- and high-order in the system–bath interaction operators, defining them for either general quantum harmonic oscillator baths or specialising them for independent baths with Lorentzian spectral densities. Its wide applicability is demonstrated on the examples of systems coupled to different baths (with varying system–bath interaction strength and bath memory length), and compared with the exact pseudomode and the popular quantum state diffusion approach. The method captures the decoherence of the system interacting with the bath, while conserving the total energy. Our results suggest that quantum coherence effects persist in open quantum systems for much longer times than previously thought.


Sign in / Sign up

Export Citation Format

Share Document