Split-ring resonator-based compact microstrip antenna

2019 ◽  
Vol 33 (04) ◽  
pp. 1950043
Author(s):  
Linpeng Li ◽  
Shengze Ye ◽  
Jianchun Xu ◽  
Yanan Hao ◽  
Limin Guo ◽  
...  

Compact microstrip antennas based on split-ring resonator (SRR) structure are proposed and fabricated in this paper. The resonant frequency of the antennas is discussed upon different geometric structures. The influencing mechanism of the antenna parameters on resonant frequency is analyzed. The analytical and experimental analyses are carried out and proved that the resonant frequency can be controlled from 13.5 GHz to 17.2 GHz by tuning some of the crucial parameters. A good agreement between the simulations and the measurement results suggests that the proposed antenna can be designed at different resonant frequencies while maintaining a small-size, low-profile structure and good performance.

Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3385
Author(s):  
Jialu Ma ◽  
Jingchao Tang ◽  
Kaicheng Wang ◽  
Lianghao Guo ◽  
Yubin Gong ◽  
...  

A complex permittivity characterization method for liquid samples has been proposed. The measurement is carried out based on a self-designed microwave sensor with a split ring resonator (SRR), the unload resonant frequency of which is 5.05 GHz. The liquid samples in capillary are placed in the resonant zone of the fabricated senor for high sensitivity measurement. The frequency shift of 58.7 MHz is achieved when the capillary is filled with ethanol, corresponding a sensitivity of 97.46 MHz/μL. The complex permittivity of methanol, ethanol, isopropanol (IPA) and deionized water at the resonant frequency are measured and calibrated by the first order Debye model. Then, the complex permittivity of different concentrations of aqueous solutions of these materials are measured by using the calibrated sensor system. The results show that the proposed sensor has high sensitivity and accuracy in measuring the complex permittivity of liquid samples with volumes as small as 0.13 μL. It provides a useful reference for the complex permittivity characterization of small amount of liquid chemical samples. In addition, the characterization of an important biological sample (inositol) is carried out by using the proposed sensor.


2013 ◽  
Vol 55 (4) ◽  
pp. 814-816 ◽  
Author(s):  
D. Laila ◽  
R. Sujith ◽  
V.A. Shameena ◽  
C.M. Nijas ◽  
V.P. Sarin ◽  
...  

2016 ◽  
Vol 54 (6) ◽  
pp. 689 ◽  
Author(s):  
Phan Duy Tung ◽  
Phan Huu Lam ◽  
Nguyen Thi Quynh Hoa

A microstrip antenna using negative index metamaterial based on complementary split ring resonator (CSRR)-loaded ground has been investigated in order to miniaturize the size and improve the antenna characteristics. The proposed antennas are designed on FR4 material and simulated results are provided by HFSS software. The metamaterial antenna was reduced 75 % the overall size compared to the normal microstrip antenna. Furthermore, compared with the normal microstrip antenna, the antenna characteristics of the metamaterial antenna were improved significantly.  The proposed metamaterial antenna exhibited the antenna resonate at 2.45 GHz, the gain of higher than 6.5 dB and the bandwidth of 110 MHz through the whole WLAN band.  The obtained results indicated that the proposed antenna is a good candidate for WLAN applications.


Sign in / Sign up

Export Citation Format

Share Document