Half-metallic properties in Co2XSn (X = Ti, V and Cr) full-Heusler compound

2019 ◽  
Vol 34 (02) ◽  
pp. 2050028 ◽  
Author(s):  
H. Abbassa ◽  
A. Labdelli ◽  
S. Meskine ◽  
Y. Benaissa Cherif ◽  
A. Boukortt

First-principles calculations based on density functional theory (DFT) confirm the half-metallic ferromagnetism in both [Formula: see text] and [Formula: see text], and the nearly half-metallic ferromagnetism in [Formula: see text] Heusler alloys with the [Formula: see text]-type structure [Formula: see text]. The electronic band structures and density of states (DOS) calculations of the [Formula: see text] and [Formula: see text] compounds show that the spin-up electrons are metallic, whereas the spin-down bands are semiconducting with a gap of 0.47 eV and 0.53 eV, respectively, with 0.21 eV and 0.36 eV as a spin-flip gap, respectively. The [Formula: see text] and [Formula: see text] Heusler were half-metal compounds with magnetic moment of [Formula: see text] and [Formula: see text] at the equilibrium lattice constants [Formula: see text] Å and [Formula: see text] Å, respectively, which agrees with the Slater–Pauling rule, and have 100% polarization for a wide range of lattice parameters. The [Formula: see text] is a nearly half-metal (NHF) compound with magnetic moment of [Formula: see text] and 92.9% polarization at the equilibrium lattice constants [Formula: see text] Å and acquire half-metal behavior under the pressure 16.70 GPa.

2011 ◽  
Vol 25 (18) ◽  
pp. 1537-1548 ◽  
Author(s):  
M. YOGESWARI ◽  
G. KALAPANA

Self-consistent ab initio calculations were carried out to study the structural, electronic and magnetic properties of nine ternary compounds Ca 4 XA 3 ( X = B , C and N ; A = S , Se and Te ). The calculations were performed by using tight-binding linear muffin tin orbital (TB-LMTO) method within the local density approximation (LDA). The calculations reveal that half-metallic ferromagnetism can be obtained for C - and N -doping with the integer magnetic moment of 2.00 μ B and 1.00 μ B per cell. However, B substitution does not induce magnetism in CaS and CaSe systems, but it produces ferromagnetism in CaTe system with magnetic moment of 2.67 μ B per cell. Moreover C - and N -doping enhance the stable ferromagnetic state in calcium chalcogenide systems. Spin-dependent electronic band structure, total and partial densities of state calculations demonstrate that localized magnetic moments substantially come from impurity atoms. Half-metallic ferromagnetism predominately originates from spin-polarization of electrons in 2p orbital states of C and N atoms. In addition, equilibrium lattice constant, bulk modulus, atomic local magnetic moments, half-metallic gap and robustness of half-metallicity have been calculated.


2018 ◽  
Vol 32 (07) ◽  
pp. 1850098 ◽  
Author(s):  
Yan-Ni Wen ◽  
Peng-Fei Gao ◽  
Ming-Gang Xia ◽  
Sheng-Li Zhang

Half-metallic ferromagnetism (HMFM) has great potential application in spin filter. However, it is extremely rare, especially in two-dimensional (2D) materials. At present, 2D materials have drawn international interest in spintronic devices. Here, we use ab initio density functional theory (DFT) calculations to study the structural stability and electrical and magnetic properties of the MoS2-based 2D superlattice formed by inserting graphene hexagonal ring in [Formula: see text] MoS2 supercell. Two kinds of structures with hexagonal carbon ring were predicted with structural stability and were shown HMFM. The two structures combine the spin transport capacity of graphene with the magnetism of the defective 2D MoS2. And they have strong covalent bonding between the C and S or Mo atoms near the interface. This work is very useful to help us to design reasonable MoS2-based spin filter.


SPIN ◽  
2020 ◽  
Vol 10 (03) ◽  
pp. 2050022 ◽  
Author(s):  
K. Belkacem ◽  
Y. Zaoui ◽  
S. Amari ◽  
L. Beldi ◽  
B. Bouhafs

The first-principles approach based on density functional theory (DFT) and the full-potential linearized augmented plane-wave method were employed to investigate the structural, elastic, electronic and magnetic properties of Na[Formula: see text]NO ([Formula: see text], Sr and Ba) quaternary half-Heusler alloys. The generalized gradient approximation (GGA) as parameterized by Perdew, Burke and Ernzerhof (PBE) and the modified Becke–Johnson exchange potential were used. As far as we know, we present our results which for the first time quantitatively account for the electronic structures and magnetic properties of Na[Formula: see text]NO ([Formula: see text], Sr and Ba) quaternary half-Heusler alloys. From the total energy calculation using three possible atomic configurations ([Formula: see text], [Formula: see text] and [Formula: see text]), it is found that the Na[Formula: see text]NO ([Formula: see text], Sr and Ba) quaternary half-Heusler alloys are more stable in the ferromagnetic [Formula: see text]-phase. From our estimated elastic constants [Formula: see text], it is found that all the considered Heusler alloys are mechanically stable in the [Formula: see text]-phase. We have also investigated the robustness of the half-metallicity with respect to the variation of lattice constants in these alloys. We have found that these alloys are half-metallic ferromagnets (HMFs) with a magnetic moment of 2[Formula: see text][Formula: see text] per formula unit at their equilibrium volumes. The spin-polarized electronic band structure and density of states of these quaternary half-Heusler alloys calculated by GGA (mBJ-GGA) show that the minority spin channels have metallic nature and the majority spin channels have a semiconductor character with half-metallic gaps of 0.49[Formula: see text]eV (2.17[Formula: see text]eV), 0.72[Formula: see text]eV (2.28[Formula: see text]eV) and 0.96[Formula: see text]eV (2.22[Formula: see text]eV) for NaCaNO, NaSrNO and NaBaNO quaternary half-Heusler alloys, respectively. Analysis of the density of states and the spin charge density of these quaternary alloys indicates that their magnetic moments mainly originate from the strong spin-polarization of 2[Formula: see text] states of N atoms and O atoms.


2017 ◽  
pp. 31-36
Author(s):  
Prakash Sharma ◽  
Gopi Chandra Kaphle

Heusler alloys have been of great interest because of their application in the field of modern technological word. Electronic and magnetic properties of Co, Mn, Si and the Heusler alloy Co2MnSi have been studied using Density functional theory based Tight Binding Linear Muffin Tin Orbital with Atomic Sphere Approximation (TB-LMTO-ASA) approach. From the calculation lattice parameter of optimized structure of Co, Mn, Si and Co2MnSi are found to be 2.52A0 , 3.49A0 , 5.50A0 , 5.53A0 respectively. Band structure calculations show that Co and Mn are metallic, Si as semi-conducting while the Heusler alloy Co2MnSi as half-metallic in nature with band gap 0.29eV. The charge density plot indicates major bonds in Co2MnSi are ionic in nature. Magnetic property has been studied using the density of states (DOS), indicating that Co and Co2MnSi are magnetic with magnetic moment 2.85μB and 4.91μB respectively. The contribution of orbitals in band, DOS and magnetic moment are due to d-orbitals of Co and Mn and little from s and p-orbital of Si in Co2MnSi.The Himalayan Physics Vol. 6 & 7, April 2017 (31-36)


2004 ◽  
Vol 95 (11) ◽  
pp. 7219-7221 ◽  
Author(s):  
Ming Zhang ◽  
Zhu-Hong Liu ◽  
Hai-Ning Hu ◽  
Guo-Dong Liu ◽  
Yu-Ting Cui ◽  
...  

SPIN ◽  
2021 ◽  
pp. 2150007
Author(s):  
I. E. Rabah ◽  
H. Rached ◽  
M. Rabah ◽  
D. Rached ◽  
N. Benkhettou

The aim purpose of this study is to investigate the structural, elastic, magnetic, electronic properties and half-metallic stability under pressure of ScNiCrZ ([Formula: see text], Ga and In) quaternary Heusler alloys using full-potential linear muffin-tin orbital (FP-LMTO) method within the gradient generalized approximation (GGA) for exchange, and correlation potential. In order to evaluate the stability of our compounds, the formation energy, and elastic constants have been evaluated. The results showed that our compounds have ferromagnetic ground states and are energetically more stable in type-[Formula: see text] configuration. True half-metallic ferromagnetic behavior with 100% spin polarization at Fermi level [Formula: see text] with high Curie temperature [Formula: see text], and very interesting bandgap in the minority spin are obtained for the three alloys. The calculated total magnetic moment [Formula: see text] for all three alloys is consistent with Slater[Formula: see text]Pauling rule. The half-metallicity is maintained over a wide range of lattice constants making these alloys promising for spintronic, and magneto-electronics applications.


Sign in / Sign up

Export Citation Format

Share Document