Chirped and chirp-free optical solitons for Heisenberg ferromagnetic spin chains model

2021 ◽  
pp. 2150139
Author(s):  
Syed Tahir Raza Rizvi ◽  
Aly R. Seadawy ◽  
Ishrat Bibi ◽  
Muhammad Younis

In this paper, we study (2+1)-dimensional non-linear spin dynamics of Heisenberg ferromagnetic spin chains equation (HFSCE) for various soliton solutions. We obtain two types of optical solitons i.e. chirp free and chirped solitons. We obtain bright and bright-like soliton, singular-like solitons, periodic and rational solutions, Weierstrass elliptic functions solutions and other solitary wave solutions for HFSCE with the aid of sub-ODE method. At the end, we present graphical representation of our solutions.

Author(s):  
Khalid K. Ali ◽  
Hadi Rezazadeh ◽  
Nauman Raza ◽  
Mustafa Inc

The main consideration of this paper is to discuss cubic optical solitons in a polarization-preserving fiber modeled by nonlinear Schrödinger equation (NLSE). We extract the solutions in the forms of hyperbolic, trigonometric including a class of solitary wave solutions like dark, bright–dark, singular, singular periodic, multiple-optical soliton and mixed complex soliton solutions. A recently developed integration tool known as new extended direct algebraic method (NEDAM) is applied to analyze the governing model. Moreover, the studied equation is discussed with two types of nonlinearity. The constraint conditions are explicitly presented for the resulting solutions. The accomplished results show that the applied computational system is direct, productive, reliable and can be carried out in more complicated phenomena.


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 896-909 ◽  
Author(s):  
Dianchen Lu ◽  
Aly R. Seadawy ◽  
Mujahid Iqbal

AbstractIn this research work, for the first time we introduced and described the new method, which is modified extended auxiliary equation mapping method. We investigated the new exact traveling and families of solitary wave solutions of two well-known nonlinear evaluation equations, which are generalized Zakharov-Kuznetsov-Benjamin-Bona-Mahony and simplified modified forms of Camassa-Holm equations. We used a new technique and we successfully obtained the new families of solitary wave solutions. As a result, these new solutions are obtained in the form of elliptic functions, trigonometric functions, kink and antikink solitons, bright and dark solitons, periodic solitary wave and traveling wave solutions. These new solutions show the power and fruitfulness of this new method. We can solve other nonlinear partial differential equations with the use of this method.


2018 ◽  
Vol 33 (32) ◽  
pp. 1850183 ◽  
Author(s):  
Mujahid Iqbal ◽  
Aly R. seadawy ◽  
Dianchen Lu

In this research, we consider the propagation of one-dimensional nonlinear behavior in a unmagnetized plasma. By using the reductive perturbation technique to formulate the nonlinear mathematic model which is modified Kortewege-de Vries (mKdV), we apply the extended form of two methods, which are extended auxiliary equation mapping and extended direct algebraic methods, to investigate the new families of electron-acoustic solitary wave solutions of mKdV. These new exact traveling and solitary wave solutions which represent the electrostatic potential for mKdV and also the graphical representation of electrostatic potential are shown with the aid of Mathematica.


Author(s):  
A. Tripathy ◽  
S. Sahoo ◽  
S. Saha Ray ◽  
M. A. Abdou

In this paper, the newly derived solutions for the optical soliton of Kerr law nonlinearity form of Biswas–Arshed model are investigated. The exact solutions are extracted by deploying two different novel methods namely, [Formula: see text]-expansion method and Riccati–Bernoulli sub-ODE method. Furthermore, in different conditions, the resultants show different wave solutions like singular, kink, anti-kink, periodic, rational, exponential and dark soliton solutions. Also, the dynamics of the attained solutions are presented graphically.


2019 ◽  
Vol 33 (19) ◽  
pp. 1950220
Author(s):  
Asma Rashid Butt ◽  
Muhammad Abdullah ◽  
Nauman Raza

This paper deals with the dynamics of optical solitons in nonlinear Schrödinger equation (NLSE) with cubic-quintic law nonlinearity in the presence of self-frequency shift and self-steepening. This type of equation describes the ultralarge capacity transmission and traveling of laser light pulses in optical fibers. Two robust analytical approaches are employed to determine contemporary solutions. Some new explicit rational, periodic and combo periodic soliton solutions are extracted using the extended trial equation method. The Riccati–Bernoulli sub-ODE method provided us with singular and dark soliton solutions. The constraints found are necessary for the existence of solitons.


2018 ◽  
Vol 32 (20) ◽  
pp. 1850234 ◽  
Author(s):  
A. H. Abdel Kader ◽  
M. S. Abdel Latif

In this paper, using Lie symmetry method, we obtain some new exact traveling wave solutions of the Camassa–Holm–Degasperis–Procesi (CH–DP) equation. Some new bright and dark soliton solutions are obtained. Also, some new doubly periodic solutions in the form of Jacobi elliptic functions and Weierstrass elliptic functions are obtained.


2020 ◽  
Vol 34 (13) ◽  
pp. 2050139 ◽  
Author(s):  
Aly R. Seadawy ◽  
Sultan Z. Alamri ◽  
Haya M. Al-Sharari

The propagation of soliton through optical fibers has been studied by using nonlinear Schrödinger’s equation (NLSE). There are different types of NLSEs that study this physical phenomenon such as (GRKLE) generalized Radhakrishnan–Kundu–Lakshmanan equation. The generalized nonlinear RKL dynamical equation, which presents description of the dynamical of light pulses, has been studied. We used two formulas of the modified simple equation method to construct the optical soliton solutions of this model. The obtained solutions can be represented as bistable bright, dark, periodic solitary wave solutions.


2010 ◽  
Vol 65 (8-9) ◽  
pp. 658-664 ◽  
Author(s):  
Xian-Jing Lai ◽  
Xiao-Ou Cai

In this paper, the decomposition method is implemented for solving the bidirectional Sawada- Kotera (bSK) equation with two kinds of initial conditions. As a result, the Adomian polynomials have been calculated and the approximate and exact solutions of the bSK equation are obtained by means of Maple, such as solitary wave solutions, doubly-periodic solutions, two-soliton solutions. Moreover, we compare the approximate solution with the exact solution in a table and analyze the absolute error and the relative error. The results reported in this article provide further evidence of the usefulness of the Adomian decomposition method for obtaining solutions of nonlinear problems


Sign in / Sign up

Export Citation Format

Share Document