New explicit solitons for the general modified fractional Degasperis–Procesi–Camassa–Holm equation with a truncated M-fractional derivative

Author(s):  
Xiao Hong ◽  
A. G. Davodi ◽  
S. M. Mirhosseini-Alizamini ◽  
M. M. A. Khater ◽  
Mustafa Inc

Important analytical methods such as the methods of exp-function, rational hyperbolic method (RHM) and sec–sech method are applied in this paper to solve fractional nonlinear partial differential equations (FNLPDEs) with a truncated [Formula: see text]-fractional derivative (TMFD), which consist of exponential terms. A general modified fractional Degasperis–Procesi–Camassa–Holm equation (GM-FDP-CHE) is investigated with TMFD. The exp-function method is also applied to derive a variety of traveling wave solutions (TWSs) with distinct physical structures for this nonlinear evolution equation. The RHM is used to obtain single-soliton solutions for this equation. The sec–sech method is used to derive multiple-soliton solutions of the GM-FDP-CHE. These techniques can be implemented to find various differential equations exact solutions arising from problems in engineering. The analytical solution of the [Formula: see text]-fractional heat equation is found. Graphical representations are also given.

2021 ◽  
pp. 2150417
Author(s):  
Kalim U. Tariq ◽  
Mostafa M. A. Khater ◽  
Muhammad Younis

In this paper, some new traveling wave solutions to the conformable time-fractional Wu–Zhang system are constructed with the help of the extended Fan sub-equation method. The conformable fractional derivative is employed to transform the fractional form of the system into ordinary differential system with an integer order. Some distinct types of figures are sketched to illustrate the physical behavior of the obtained solutions. The power and effective of the used method is shown and its ability for applying different forms of nonlinear evolution equations is also verified.


2019 ◽  
Vol 33 (29) ◽  
pp. 1950342 ◽  
Author(s):  
Aly R. Seadawy ◽  
Kalim U. Tariq ◽  
Jian-Guo Liu

In this paper, the auxiliary expansion equation method is applied to compute the analytical wave solutions for (3[Formula: see text]+[Formula: see text]1)-dimensional Boussinesq and Kadomtsev–Petviashvili (KP) equations. A simple transformation is carried out to reduce the set of nonlinear partial differential equations (NPDEs) into ODEs. These obtained results hold numerous traveling wave solutions that are of key importance in elucidating some physical circumstance.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Yao Long ◽  
Yinghui He ◽  
Shaolin Li

The Exp-function method is generalized to construct N-soliton solutions of a new generalization of the associated Camassa-Holm equation. As a result, one-soliton, two-soliton, and three-soliton solutions are obtained, from which the uniform formulae of N-soliton solutions are derived. It is shown that the Exp-function method may provide us with a straightforward, effective, and alternative mathematical tool for generating N-soliton solutions of nonlinear evolution equations in mathematical physics.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Yi Wei ◽  
Xing-Qiu Zhang ◽  
Zhu-Yan Shao ◽  
Lu-Feng Gu ◽  
Xiao-Feng Yang

The homogeneous balance of undetermined coefficient (HBUC) method is presented to obtain not only the linear, bilinear, or homogeneous forms but also the exact traveling wave solutions of nonlinear partial differential equations. Linear equation is obtained by applying the proposed method to the (2+1)-dimensional dispersive long water-wave equations. Accordingly, the multiple soliton solutions, periodic solutions, singular solutions, rational solutions, and combined solutions of the (2+1)-dimensional dispersive long water-wave equations are obtained directly. The HBUC method, which can be used to handle some nonlinear partial differential equations, is a standard, computable, and powerful method.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 1003-1010
Author(s):  
Asıf Yokuş ◽  
Hülya Durur ◽  
Taher A. Nofal ◽  
Hanaa Abu-Zinadah ◽  
Münevver Tuz ◽  
...  

Abstract In this article, the Sinh–Gordon function method and sub-equation method are used to construct traveling wave solutions of modified equal width equation. Thanks to the proposed methods, trigonometric soliton, dark soliton, and complex hyperbolic solutions of the considered equation are obtained. Common aspects, differences, advantages, and disadvantages of both analytical methods are discussed. It has been shown that the traveling wave solutions produced by both analytical methods with different base equations have different properties. 2D, 3D, and contour graphics are offered for solutions obtained by choosing appropriate values of the parameters. To evaluate the feasibility and efficacy of these techniques, a nonlinear evolution equation was investigated, and with the help of symbolic calculation, these methods have been shown to be a powerful, reliable, and effective mathematical tool for the solution of nonlinear partial differential equations.


2018 ◽  
Vol 28 (11) ◽  
pp. 2681-2687 ◽  
Author(s):  
Abdul-Majid Wazwaz

Purpose The purpose of this paper is concerned with developing a (2 + 1)-dimensional Benjamin–Ono equation. The study shows that multiple soliton solutions exist and multiple complex soliton solutions exist for this equation. Design/methodology/approach The proposed model has been handled by using the Hirota’s method. Other techniques were used to obtain traveling wave solutions. Findings The examined extension of the Benjamin–Ono model features interesting results in propagation of waves and fluid flow. Research limitations/implications The paper presents a new efficient algorithm for constructing extended models which give a variety of multiple soliton solutions. Practical implications This work is entirely new and provides new findings, where although the new model gives multiple soliton solutions, it is nonintegrable. Originality/value The work develops two complete sets of multiple soliton solutions, the first set is real solitons, whereas the second set is complex solitons.


Sign in / Sign up

Export Citation Format

Share Document