Analysis of epidemic propagation using mean field theory on signed graphs

Author(s):  
Hongwei Su ◽  
Zi-Wei Zhang ◽  
Guoxing Wen ◽  
Guan Yan

Over the past few decades, the study of epidemic propagation has caught widespread attention from many areas. The field of graphs contains a wide body of research, yet only a few studies explore epidemic propagation’s dynamics in “signed” networks. Motivated by this problem, in this paper we propose a new epidemic propagation model for signed networks, denoted as S-SIS. To explain our analysis, we utilized the mean field theory to demonstrate the theoretical results. When we compare epidemic propagation through negative links to those only having positive links, we find that a higher proportion of infected nodes actually spreads at a relatively small infection rate. It is also found that when the infection rate is higher than a certain value, the overall spreading in a signed network begins showing signs of suppression. Finally, in order to verify our findings, we apply the S-SIS model on Erdös–Rényi random network and scale-free network, and the simulation results is well consist with the theoretical analysis.

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Kai Xu ◽  
Jianming Mo ◽  
Qian Qian ◽  
Fengying Zhang ◽  
Xiaofeng Xie ◽  
...  

Associated credit risk is a kind of credit risk among the associated credit entities formed by credit-related entities. Focusing on this hot topic of associated credit risk and the relevant contagion and considering the latent entities and their incubatory period, this paper builds an infectious dynamic model to describe the associated credit risk contagion of associated credit entities based on the mean-field theory of complex networks. Firstly, this paper analyzes the stable state of the associated credit risk contagion in the associated entity network, considering the latent entities and their incubatory period. Secondly, from the perspective of complex network and considering the incubatory period, a SHIS model is built to reveal how the incubatory period influences associated credit risk contagion. Finally, the sensitivity of some parameters is analyzed in the Barabási–Albert (BA) scale-free network. The results show the following: (i) the contagion threshold of associated credit risk is related to the incubatory period of latent entities, the recovery rate and infectivity of infected entities, and the newborn rate of credit entities; (ii) the infectious rate of infected entities, the mortality rate of credit entities, and the important factors stated in (i) are all significantly correlated with the density of infected entities.


2014 ◽  
Vol 596 ◽  
pp. 868-872 ◽  
Author(s):  
Rui Sun ◽  
Wan Bo Luo

Considering propagation characteristics and affecting factors of rumor in real-world complex networks, this paper described different propagation rates of different nodes by introducing the rumor acceptability function. Based on mean-field theory, this paper presented a rumor propagation model with non-uniform propagation rate, and then simulated the behaviour of rumor propagation on scale-free network and calculated the propagation thresholds by corresponding dynamics equation. Theoretical analysis and simulation results show that nodes with different rumor acceptability could lead to slowing the spread of rumors, make positive propagation threshold arise, and effectively contain the outbreak and reduce the risk of rumors.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Satoru Morita

Abstract Spreading phenomena are ubiquitous in nature and society. For example, disease and information spread over underlying social and information networks. It is well known that there is no threshold for spreading models on scale-free networks; this suggests that spread can occur on such networks, regardless of how low the contact rate may be. In this paper, I consider six models with different contact and propagation mechanisms, which include models studied so far, but are apt to be confused. To compare these six models, I analyze them by degree-based mean-field theory. I find that the result depends on the details of contact and propagation mechanism.


2012 ◽  
Vol 562-564 ◽  
pp. 1386-1389
Author(s):  
Yuan Mei Wang ◽  
Tao Li

In the SIR model once a node is cured after infection it becomes permanently immune,but we assume this immunity to be temporary. So we obtain an epidemic model with time delay on scale-free networks. Using the mean field theory the spreading threshold and the spreading dynamics is analyzed. Theoretical results indicate that the threshold is significantly dependent on the topology of scale-free networks and time delay. Numerical simulations confirmed the theoretical results.


1999 ◽  
Vol 272 (1-2) ◽  
pp. 173-187 ◽  
Author(s):  
Albert-László Barabási ◽  
Réka Albert ◽  
Hawoong Jeong

2010 ◽  
Vol 24 (24) ◽  
pp. 4753-4759 ◽  
Author(s):  
TIELI SUN ◽  
JINGWEI DENG ◽  
KAIYING DENG ◽  
SHUANGLIANG TIAN

In this paper, we first derive the analytical expressions of the degree distributions for the network with random initializing attractiveness and preferential linking by using the approach of mean-field theory. Then we discuss the justification of the scale-free behavior and give a remark about the proposed model. Finally, a series of theoretical analysis and numerical simulations for the network model are conducted. The computer simulations and the theoretical results are consistent, and display the effectiveness of the model.


1993 ◽  
Vol 3 (3) ◽  
pp. 385-393 ◽  
Author(s):  
W. Helfrich

2000 ◽  
Vol 61 (17) ◽  
pp. 11521-11528 ◽  
Author(s):  
Sergio A. Cannas ◽  
A. C. N. de Magalhães ◽  
Francisco A. Tamarit

Sign in / Sign up

Export Citation Format

Share Document