An Efficient and Effective Algorithm for Large Scale Global Optimization Problems

Author(s):  
Kanchao Lian ◽  
Xu-Yu Peng ◽  
Aijia Ouyang

Invasive weed optimization (IWO) algorithm and quantum-behaved particle swarm optimization (QPSO) algorithm are inclined to fall into local optimum with lower convergence accuracy when separately used to deal with large scale global optimization (LSGO) problems. In order to fully utilize the advantages of these two intelligent algorithms and complement each other, following the idea of portfolio optimization, this paper correspondingly adjusts and improves the quantum models of IWO and QPSO, organically integrates the two algorithms, and proposes the quantum-behaved invasive weed optimization (QIWO) algorithm. This mixed algorithm can achieve the purpose of information exchange and cooperative search through alternate search enables the make algorithm converge to the optimal solution quickly, properly overcoming the defects of falling into local optimum and premature convergence. Test results of 20 LSGO functions show that compared with other algorithms, QIWO has stronger global optimization capability, faster convergence speed and higher convergence accuracy.

2011 ◽  
Vol 48-49 ◽  
pp. 25-28
Author(s):  
Wei Jian Ren ◽  
Yuan Jun Qi ◽  
Wei Lv ◽  
Cheng Da Li

According to the phenomenon of falling into local optimum during solving large-scale optimization problems and the shortcomings of poor convergence of Immune Genetic Algorithm, a new kind of probability selection method based on the concentration for the genetic operation is presented. Considering the features of chaos optimization method, such like not requiring the solved problems with continuity or differentiability, which is unlike the conventional method, and also with a solving process within a certain range traverse in order to find the global optimal solution, a kind of Chaos Immune Genetic Algorithm based on Logistic map and Hénon map is proposed. Through the application to TSP problem, the results have showed the superior to other algorithms.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Qinghua Gu ◽  
Xuexian Li ◽  
Song Jiang

Most real-world optimization problems tackle a large number of decision variables, known as Large-Scale Global Optimization (LSGO) problems. In general, the metaheuristic algorithms for solving such problems often suffer from the “curse of dimensionality.” In order to improve the disadvantage of Grey Wolf Optimizer when solving the LSGO problems, three genetic operators are embedded into the standard GWO and a Hybrid Genetic Grey Wolf Algorithm (HGGWA) is proposed. Firstly, the whole population using Opposition-Based Learning strategy is initialized. Secondly, the selection operation is performed by combining elite reservation strategy. Then, the whole population is divided into several subpopulations for cross-operation based on dimensionality reduction and population partition in order to increase the diversity of the population. Finally, the elite individuals in the population are mutated to prevent the algorithm from falling into local optimum. The performance of HGGWA is verified by ten benchmark functions, and the optimization results are compared with WOA, SSA, and ALO. On CEC’2008 LSGO problems, the performance of HGGWA is compared against several state-of-the-art algorithms, CCPSO2, DEwSAcc, MLCC, and EPUS-PSO. Simulation results show that the HGGWA has been greatly improved in convergence accuracy, which proves the effectiveness of HGGWA in solving LSGO problems.


Algorithms ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 146
Author(s):  
Aleksei Vakhnin ◽  
Evgenii Sopov

Modern real-valued optimization problems are complex and high-dimensional, and they are known as “large-scale global optimization (LSGO)” problems. Classic evolutionary algorithms (EAs) perform poorly on this class of problems because of the curse of dimensionality. Cooperative Coevolution (CC) is a high-performed framework for performing the decomposition of large-scale problems into smaller and easier subproblems by grouping objective variables. The efficiency of CC strongly depends on the size of groups and the grouping approach. In this study, an improved CC (iCC) approach for solving LSGO problems has been proposed and investigated. iCC changes the number of variables in subcomponents dynamically during the optimization process. The SHADE algorithm is used as a subcomponent optimizer. We have investigated the performance of iCC-SHADE and CC-SHADE on fifteen problems from the LSGO CEC’13 benchmark set provided by the IEEE Congress of Evolutionary Computation. The results of numerical experiments have shown that iCC-SHADE outperforms, on average, CC-SHADE with a fixed number of subcomponents. Also, we have compared iCC-SHADE with some state-of-the-art LSGO metaheuristics. The experimental results have shown that the proposed algorithm is competitive with other efficient metaheuristics.


1995 ◽  
Vol 117 (1) ◽  
pp. 155-157 ◽  
Author(s):  
F. C. Anderson ◽  
J. M. Ziegler ◽  
M. G. Pandy ◽  
R. T. Whalen

We have examined the feasibility of using massively-parallel and vector-processing supercomputers to solve large-scale optimization problems for human movement. Specifically, we compared the computational expense of determining the optimal controls for the single support phase of gait using a conventional serial machine (SGI Iris 4D25), a MIMD parallel machine (Intel iPSC/860), and a parallel-vector-processing machine (Cray Y-MP 8/864). With the human body modeled as a 14 degree-of-freedom linkage actuated by 46 musculotendinous units, computation of the optimal controls for gait could take up to 3 months of CPU time on the Iris. Both the Cray and the Intel are able to reduce this time to practical levels. The optimal solution for gait can be found with about 77 hours of CPU on the Cray and with about 88 hours of CPU on the Intel. Although the overall speeds of the Cray and the Intel were found to be similar, the unique capabilities of each machine are better suited to different portions of the computational algorithm used. The Intel was best suited to computing the derivatives of the performance criterion and the constraints whereas the Cray was best suited to parameter optimization of the controls. These results suggest that the ideal computer architecture for solving very large-scale optimal control problems is a hybrid system in which a vector-processing machine is integrated into the communication network of a MIMD parallel machine.


Author(s):  
Bernard K.S. Cheung

Genetic algorithms have been applied in solving various types of large-scale, NP-hard optimization problems. Many researchers have been investigating its global convergence properties using Schema Theory, Markov Chain, etc. A more realistic approach, however, is to estimate the probability of success in finding the global optimal solution within a prescribed number of generations under some function landscapes. Further investigation reveals that its inherent weaknesses that affect its performance can be remedied, while its efficiency can be significantly enhanced through the design of an adaptive scheme that integrates the crossover, mutation and selection operations. The advance of Information Technology and the extensive corporate globalization create great challenges for the solution of modern supply chain models that become more and more complex and size formidable. Meta-heuristic methods have to be employed to obtain near optimal solutions. Recently, a genetic algorithm has been reported to solve these problems satisfactorily and there are reasons for this.


2017 ◽  
Vol 2017 ◽  
pp. 1-18 ◽  
Author(s):  
Ali Wagdy Mohamed ◽  
Abdulaziz S. Almazyad

This paper presents Differential Evolution algorithm for solving high-dimensional optimization problems over continuous space. The proposed algorithm, namely, ANDE, introduces a new triangular mutation rule based on the convex combination vector of the triplet defined by the three randomly chosen vectors and the difference vectors between the best, better, and the worst individuals among the three randomly selected vectors. The mutation rule is combined with the basic mutation strategy DE/rand/1/bin, where the new triangular mutation rule is applied with the probability of 2/3 since it has both exploration ability and exploitation tendency. Furthermore, we propose a novel self-adaptive scheme for gradual change of the values of the crossover rate that can excellently benefit from the past experience of the individuals in the search space during evolution process which in turn can considerably balance the common trade-off between the population diversity and convergence speed. The proposed algorithm has been evaluated on the 20 standard high-dimensional benchmark numerical optimization problems for the IEEE CEC-2010 Special Session and Competition on Large Scale Global Optimization. The comparison results between ANDE and its versions and the other seven state-of-the-art evolutionary algorithms that were all tested on this test suite indicate that the proposed algorithm and its two versions are highly competitive algorithms for solving large scale global optimization problems.


Sign in / Sign up

Export Citation Format

Share Document