A HYBRID FRAMEWORK COMBINING STRUCTURAL AND DECISION-THEORETIC PATTERN RECOGNITION AND APPLICATIONS

Author(s):  
ENRIQUE VIDAL ◽  
FRANCISCO CASACUBERTA

A new framework is introduced which allows the formulation of difficult structural classification tasks in terms of decision-theoretic-based pattern recognition. It is based on extending the classical formulation of generalized linear discriminant functions so as to permit each given object to have a different vector representation in each class. The proposed extension properly accounts for the corresponding extension of the classical learning techniques of linear discriminant functions in a way such that the convergence of the extended techniques can still be proved. The proposed framework can be considered as a hybrid methodology in which both structural and decision-theoretic pattern recognition are integrated. Furthermore, it can be considered as a means to achieve convenient tradeoffs between the inductive and deductive ways of knowledge acquisition, which can result in rendering tractable the possibly hard original inductive learning problem associated with the given task. The proposed framework and methods are illustrated through their use in two difficult structural classification tasks, showing both the appropriateness and the capability of these methods to obtain useful results.

Author(s):  
C. Radha

An important problem in pattern recognition is that of pattern classification. The objective of classification is to determine a discriminant function which is consistent with the given training examples and performs reasonably well on an unlabeled test set of examples. The degree of performance of the classifier on the test examples, known as its generalization performance, is an important issue in the design of the classifier. It has been established that a good generalization performance can be achieved by providing the learner with a sufficiently large number of discriminative training examples. However, in many domains, it is infeasible or expensive to obtain a sufficiently large training set. Various mechanisms have been proposed in literature to combat this problem. Active Learning techniques (Angluin, 1998; Seung, Opper, & Sompolinsky, 1992) reduce the number of training examples required by carefully choosing discriminative training examples. Bootstrapping (Efron, 1979; Hamamoto, Uchimura & Tomita, 1997) and other pattern synthesis techniques generate a synthetic training set from the given training set. We present some of these techniques and propose some general mechanisms for pattern synthesis.


Author(s):  
PETER W. PACHOWICZ

This paper presents a method for applying inductive learning techniques to texture description and recognition. Local features of texture are computed by two well-known methods, Laws’ masks and co-occurrence matrices. Then, a three-level generalization of local features is applied to create texture description rules. The first level generalization, the scaling interface, has been implemented to transform the numeric data of local texture features into their higher symbolic representation as numerical ranges. This scaling interface tests data consistency as well. The creation of description rules incorporating the inductive incremental learning algorithm is the second generalization step. The SG-TRUNC method of rule reduction is applied as the next hierarchical generalization level. This machine learning approach to texture description and recognition is compared with the classic pattern recognition methodology. The results from the recognition phase are presented from six classes of textures, characterized by smoothly changing illumination and/or texture resolution. The average recognition rate was 91% for the inductive learning approach, and all classes of textures were recognized. In comparison, the traditional k-NN pattern recognition method did not recognize one class of texture, and the average recognition rate was 83%. The proposed methodology smooths the recognition rates through the hierarchy of generalization levels, i.e. the next generalization step increases these rates for classes that were less easily recognized, and decreases these rates for classes that were more easily recognized.


Data ◽  
2020 ◽  
Vol 5 (2) ◽  
pp. 44
Author(s):  
Gibson Kimutai ◽  
Alexander Ngenzi ◽  
Rutabayiro Ngoga Said ◽  
Ambrose Kiprop ◽  
Anna Förster

Tea is one of the most popular beverages in the world, and its processing involves a number of steps which includes fermentation. Tea fermentation is the most important step in determining the quality of tea. Currently, optimum fermentation of tea is detected by tasters using any of the following methods: monitoring change in color of tea as fermentation progresses and tasting and smelling the tea as fermentation progresses. These manual methods are not accurate. Consequently, they lead to a compromise in the quality of tea. This study proposes a deep learning model dubbed TeaNet based on Convolution Neural Networks (CNN). The input data to TeaNet are images from the tea Fermentation and Labelme datasets. We compared the performance of TeaNet with other standard machine learning techniques: Random Forest (RF), K-Nearest Neighbor (KNN), Decision Tree (DT), Support Vector Machine (SVM), Linear Discriminant Analysis (LDA), and Naive Bayes (NB). TeaNet was more superior in the classification tasks compared to the other machine learning techniques. However, we will confirm the stability of TeaNet in the classification tasks in our future studies when we deploy it in a tea factory in Kenya. The research also released a tea fermentation dataset that is available for use by the community.


1982 ◽  
Vol 21 (01) ◽  
pp. 15-22 ◽  
Author(s):  
W. Schlegel ◽  
K. Kayser

A basic concept for the automatic diagnosis of histo-pathological specimen is presented. The algorithm is based on tissue structures of the original organ. Low power magnification was used to inspect the specimens. The form of the given tissue structures, e. g. diameter, distance, shape factor and number of neighbours, is measured. Graph theory is applied by using the center of structures as vertices and the shortest connection of neighbours as edges. The algorithm leads to two independent sets of parameters which can be used for diagnostic procedures. First results with colon tissue show significant differences between normal tissue, benign and malignant growth. Polyps form glands that are twice as wide as normal and carcinomatous tissue. Carcinomas can be separated by the minimal distance of the glands formed. First results of pattern recognition using graph theory are discussed.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 114
Author(s):  
Tiziano Zarra ◽  
Mark Gino K. Galang ◽  
Florencio C. Ballesteros ◽  
Vincenzo Belgiorno ◽  
Vincenzo Naddeo

Instrumental odour monitoring systems (IOMS) are intelligent electronic sensing tools for which the primary application is the generation of odour metrics that are indicators of odour as perceived by human observers. The quality of the odour sensor signal, the mathematical treatment of the acquired data, and the validation of the correlation of the odour metric are key topics to control in order to ensure a robust and reliable measurement. The research presents and discusses the use of different pattern recognition and feature extraction techniques in the elaboration and effectiveness of the odour classification monitoring model (OCMM). The effect of the rise, intermediate, and peak period from the original response curve, in collaboration with Linear Discriminant Analysis (LDA) and Artificial Neural Networks (ANN) as a pattern recognition algorithm, were investigated. Laboratory analyses were performed with real odour samples collected in a complex industrial plant, using an advanced smart IOMS. The results demonstrate the influence of the choice of method on the quality of the OCMM produced. The peak period in combination with the Artificial Neural Network (ANN) highlighted the best combination on the basis of high classification rates. The paper provides information to develop a solution to optimize the performance of IOMS.


2004 ◽  
Vol 03 (02) ◽  
pp. 265-279 ◽  
Author(s):  
STAN LIPOVETSKY ◽  
MICHAEL CONKLIN

Comparative contribution of predictors in multivariate statistical models is widely used for decision making on the importance of the variables for the aims of analysis and prediction. However, the analysis can be made difficult because of the predictors' multicollinearity that distorts estimates for coefficients in the linear aggregate. To solve the problem of the robust evaluation of the predictors' contribution, we apply the Shapley Value regression analysis that provides consistent results in the presence of multicollinearity both for regression and discriminant functions. We also show how the linear discriminant function can be constructed as a multiple regression, and how the logistic regression can be approximated by linear regression that helps to obtain the variables contribution in the linear aggregate.


Sign in / Sign up

Export Citation Format

Share Document