FINDING THE SHORTEST PATHS ON SURFACES BY FAST GLOBAL APPROXIMATION AND PRECISE LOCAL REFINEMENT

Author(s):  
RON KIMMEL ◽  
NAHUM KIRYATI

Finding the shortest path between points on a surface is a challenging global optimization problem. It is difficult to devise an algorithm that is computationally efficient, locally accurate and guarantees to converge to the globally shortest path. In this paper a two stage coarse-to-fine approach for finding the shortest paths is suggested. In the first stage the algorithm of Ref. 10 that combines a 3D length estimator with graph search is used to rapidly obtain an approximation to the globally shortest path. In the second stage the approximation is refined to become a shorter geodesic curve, i.e., a locally optimal path. This is achieved by using an algorithm that deforms an arbitrary initial curve ending at two given surface points via geodesic curvature shortening flow. The 3D curve shortening flow is transformed into an equivalent 2D one that is implemented using an efficient numerical algorithm for curve evolution with fixed end points, introduced in Ref. 9.

2019 ◽  
Author(s):  
Nate Wessel ◽  
Steven Farber

Estimates of travel time by public transit often rely on the calculation of a shortest-path between two points for a given departure time. Such shortest-paths are time-dependent and not always stable from one moment to the next. Given that actual transit passengers necessarily have imperfect information about the system, their route selection strategies are heuristic and cannot be expected to achieve optimal travel times for all possible departures. Thus an algorithm that returns optimal travel times at all moments will tend to underestimate real travel times all else being equal. While several researchers have noted this issue none have yet measured the extent of the problem. This study observes and measures this effect by contrasting two alternative heuristic routing strategies to a standard shortest-path calculation. The Toronto Transit Commission is used as a case study and we model actual transit operations for the agency over the course of a normal week with archived AVL data transformed into a retrospective GTFS dataset. Travel times are estimated using two alternative route-choice assumptions: 1) habitual selection of the itinerary with the best average travel time and 2) dynamic choice of the next-departing route in a predefined choice set. It is shown that most trips present passengers with a complex choice among competing itineraries and that the choice of itinerary at any given moment of departure may entail substantial travel time risk relative to the optimal outcome. In the context of accessibility modelling, where travel times are typically considered as a distribution, the optimal path method is observed in aggregate to underestimate travel time by about 3-4 minutes at the median and 6-7 minutes at the \nth{90} percentile for a typical trip.


2021 ◽  
Vol 82 (1-2) ◽  
Author(s):  
Lena Collienne ◽  
Alex Gavryushkin

AbstractMany popular algorithms for searching the space of leaf-labelled (phylogenetic) trees are based on tree rearrangement operations. Under any such operation, the problem is reduced to searching a graph where vertices are trees and (undirected) edges are given by pairs of trees connected by one rearrangement operation (sometimes called a move). Most popular are the classical nearest neighbour interchange, subtree prune and regraft, and tree bisection and reconnection moves. The problem of computing distances, however, is $${\mathbf {N}}{\mathbf {P}}$$ N P -hard in each of these graphs, making tree inference and comparison algorithms challenging to design in practice. Although anked phylogenetic trees are one of the central objects of interest in applications such as cancer research, immunology, and epidemiology, the computational complexity of the shortest path problem for these trees remained unsolved for decades. In this paper, we settle this problem for the ranked nearest neighbour interchange operation by establishing that the complexity depends on the weight difference between the two types of tree rearrangements (rank moves and edge moves), and varies from quadratic, which is the lowest possible complexity for this problem, to $${\mathbf {N}}{\mathbf {P}}$$ N P -hard, which is the highest. In particular, our result provides the first example of a phylogenetic tree rearrangement operation for which shortest paths, and hence the distance, can be computed efficiently. Specifically, our algorithm scales to trees with tens of thousands of leaves (and likely hundreds of thousands if implemented efficiently).


Algorithms ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 21
Author(s):  
Christoph Hansknecht ◽  
Imke Joormann ◽  
Sebastian Stiller

The time-dependent traveling salesman problem (TDTSP) asks for a shortest Hamiltonian tour in a directed graph where (asymmetric) arc-costs depend on the time the arc is entered. With traffic data abundantly available, methods to optimize routes with respect to time-dependent travel times are widely desired. This holds in particular for the traveling salesman problem, which is a corner stone of logistic planning. In this paper, we devise column-generation-based IP methods to solve the TDTSP in full generality, both for arc- and path-based formulations. The algorithmic key is a time-dependent shortest path problem, which arises from the pricing problem of the column generation and is of independent interest—namely, to find paths in a time-expanded graph that are acyclic in the underlying (non-expanded) graph. As this problem is computationally too costly, we price over the set of paths that contain no cycles of length k. In addition, we devise—tailored for the TDTSP—several families of valid inequalities, primal heuristics, a propagation method, and a branching rule. Combining these with the time-dependent shortest path pricing we provide—to our knowledge—the first elaborate method to solve the TDTSP in general and with fully general time-dependence. We also provide for results on complexity and approximability of the TDTSP. In computational experiments on randomly generated instances, we are able to solve the large majority of small instances (20 nodes) to optimality, while closing about two thirds of the remaining gap of the large instances (40 nodes) after one hour of computation.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
S. Hemalatha ◽  
P. Valsalal

Power system network can undergo outages during which there may be a partial or total blackout in the system. In that condition, transmission of power through the optimal path is an important problem in the process of reconfiguration of power system components. For a given set of generation, load pair, there could be many possible paths to transmit the power. The optimal path needs to consider the shortest path (minimum losses), capacity of the transmission line, voltage stability, priority of loads, and power balance between the generation and demand. In this paper, the Bellman Ford Algorithm (BFA) is applied to find out the optimal path and also the several alternative paths by considering all the constraints. In order to demonstrate the capability of BFA, it has been applied to a practical 230 kV network. This restorative path search guidance tool is quite efficient in finding the optimal and also the alternate paths for transmitting the power from a generating station to demand.


Author(s):  
A. A. Heidari ◽  
M. R. Delavar

In realistic network analysis, there are several uncertainties in the measurements and computation of the arcs and vertices. These uncertainties should also be considered in realizing the shortest path problem (SPP) due to the inherent fuzziness in the body of expert's knowledge. In this paper, we investigated the SPP under uncertainty to evaluate our modified genetic strategy. We improved the performance of genetic algorithm (GA) to investigate a class of shortest path problems on networks with vague arc weights. The solutions of the uncertain SPP with considering fuzzy path lengths are examined and compared in detail. As a robust metaheuristic, GA algorithm is modified and evaluated to tackle the fuzzy SPP (FSPP) with uncertain arcs. For this purpose, first, a dynamic operation is implemented to enrich the exploration/exploitation patterns of the conventional procedure and mitigate the premature convergence of GA technique. Then, the modified GA (MGA) strategy is used to resolve the FSPP. The attained results of the proposed strategy are compared to those of GA with regard to the cost, quality of paths and CPU times. Numerical instances are provided to demonstrate the success of the proposed MGA-FSPP strategy in comparison with GA. The simulations affirm that not only the proposed technique can outperform GA, but also the qualities of the paths are effectively improved. The results clarify that the competence of the proposed GA is preferred in view of quality quantities. The results also demonstrate that the proposed method can efficiently be utilized to handle FSPP in uncertain networks.


Sign in / Sign up

Export Citation Format

Share Document