subtree prune and regraft
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 4)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Vol 82 (1-2) ◽  
Author(s):  
Lena Collienne ◽  
Alex Gavryushkin

AbstractMany popular algorithms for searching the space of leaf-labelled (phylogenetic) trees are based on tree rearrangement operations. Under any such operation, the problem is reduced to searching a graph where vertices are trees and (undirected) edges are given by pairs of trees connected by one rearrangement operation (sometimes called a move). Most popular are the classical nearest neighbour interchange, subtree prune and regraft, and tree bisection and reconnection moves. The problem of computing distances, however, is $${\mathbf {N}}{\mathbf {P}}$$ N P -hard in each of these graphs, making tree inference and comparison algorithms challenging to design in practice. Although anked phylogenetic trees are one of the central objects of interest in applications such as cancer research, immunology, and epidemiology, the computational complexity of the shortest path problem for these trees remained unsolved for decades. In this paper, we settle this problem for the ranked nearest neighbour interchange operation by establishing that the complexity depends on the weight difference between the two types of tree rearrangements (rank moves and edge moves), and varies from quadratic, which is the lowest possible complexity for this problem, to $${\mathbf {N}}{\mathbf {P}}$$ N P -hard, which is the highest. In particular, our result provides the first example of a phylogenetic tree rearrangement operation for which shortest paths, and hence the distance, can be computed efficiently. Specifically, our algorithm scales to trees with tens of thousands of leaves (and likely hundreds of thousands if implemented efficiently).


10.37236/7860 ◽  
2019 ◽  
Vol 26 (2) ◽  
Author(s):  
Jonathan Klawitter ◽  
Simone Linz

Phylogenetic networks are rooted directed acyclic graphs that represent evolutionary relationships between species whose past includes reticulation events such as hybridisation and horizontal gene transfer. To search the space of phylogenetic networks, the popular tree rearrangement operation rooted subtree prune and regraft (rSPR) was recently generalised to phylogenetic networks. This new operation – called subnet prune and regraft (SNPR) – induces a metric on the space of all phylogenetic networks as well as on several widely-used network classes. In this paper, we investigate several problems that arise in the context of computing the SNPR-distance. For a phylogenetic tree $T$ and a phylogenetic network $N$, we show how this distance can be computed by considering the set of trees that are embedded in $N$ and then use this result to characterise the SNPR-distance between $T$ and $N$ in terms of agreement forests. Furthermore, we analyse properties of shortest SNPR-sequences between two phylogenetic networks $N$ and $N'$, and answer the question whether or not any of the classes of tree-child, reticulation-visible, or tree-based networks isometrically embeds into the class of all phylogenetic networks under SNPR.


2014 ◽  
Vol 63 (4) ◽  
pp. 566-581 ◽  
Author(s):  
Christopher Whidden ◽  
Norbert Zeh ◽  
Robert G. Beiko

2013 ◽  
Author(s):  
Chris Whidden ◽  
Norbert Zeh ◽  
Robert G Beiko

Supertree methods reconcile a set of phylogenetic trees into a single structure that is often interpreted as a branching history of species. A key challenge is combining conflicting evolutionary histories that are due to artifacts of phylogenetic reconstruction and phenomena such as lateral gene transfer (LGT). Although they often work well in practice, existing supertree approaches use optimality criteria that do not reflect underlying processes, have known biases and may be unduly influenced by LGT. We present the first method to construct supertrees by using the subtree prune-and-regraft (SPR) distance as an optimality criterion. Although calculating the rooted SPR distance between a pair of trees is NP-hard, our new maximum agreement forest-based methods can reconcile trees with hundreds of taxa and > 50 transfers in fractions of a second, which enables repeated calculations during the course of an iterative search. Our approach can accommodate trees in which uncertain relationships have been collapsed to multifurcating nodes. Using a series of simulated benchmark datasets, we show that SPR supertrees are more similar to correct species histories under plausible rates of LGT than supertrees based on parsimony or Robinson-Foulds distance criteria. We successfully constructed an SPR supertree from a phylogenomic dataset of 40,631 gene trees that covered 244 genomes representing several major bacterial phyla. Our SPR-based approach also allowed direct inference of highways of gene transfer between bacterial classes and genera; a small number of these highways connect genera in different phyla and can highlight specific genes implicated in long-distance LGT.


2013 ◽  
Author(s):  
Chris Whidden ◽  
Norbert Zeh ◽  
Robert G Beiko

Supertree methods reconcile a set of phylogenetic trees into a single structure that is often interpreted as a branching history of species. A key challenge is combining conflicting evolutionary histories that are due to artifacts of phylogenetic reconstruction and phenomena such as lateral gene transfer (LGT). Although they often work well in practice, existing supertree approaches use optimality criteria that do not reflect underlying processes, have known biases and may be unduly influenced by LGT. We present the first method to construct supertrees by using the subtree prune-and-regraft (SPR) distance as an optimality criterion. Although calculating the rooted SPR distance between a pair of trees is NP-hard, our new maximum agreement forest-based methods can reconcile trees with hundreds of taxa and > 50 transfers in fractions of a second, which enables repeated calculations during the course of an iterative search. Our approach can accommodate trees in which uncertain relationships have been collapsed to multifurcating nodes. Using a series of simulated benchmark datasets, we show that SPR supertrees are more similar to correct species histories under plausible rates of LGT than supertrees based on parsimony or Robinson-Foulds distance criteria. We successfully constructed an SPR supertree from a phylogenomic dataset of 40,631 gene trees that covered 244 genomes representing several major bacterial phyla. Our SPR-based approach also allowed direct inference of highways of gene transfer between bacterial classes and genera; a small number of these highways connect genera in different phyla and can highlight specific genes implicated in long-distance LGT.


Sign in / Sign up

Export Citation Format

Share Document