A LOW-POWER DIGITAL CALIBRATION OF SAMPLING TIME MISMATCHES IN TIME-INTERLEAVED A/D CONVERTERS

2014 ◽  
Vol 23 (08) ◽  
pp. 1450115
Author(s):  
MOHAMMAD NIABOLI-GUILANI ◽  
AMIR BAZRAFSHAN-JORSHARI ◽  
REZA MESHKIN

This paper presents, a novel digital foreground calibration technique in order to reduce the effects of timing-skew in time-interleaved analog-to-digital converters (ADCs). The proposed technique implementation is simple and helps to achieve very low power consumption. This technique is based on the using of a simple reference comparator which is synchronized by one of sub-channels in each cycle of calibration. Also the detection and correction are implemented by a simple LMS loop that guarantee the convergence of algorithm. Finally, simulation results show that the new approach method can effectively correct timing errors for a specified input signal, and achieves a low power consumption, low computational complexity and high convergence speed and also verify theoretical equations for it.

2015 ◽  
Vol 719-720 ◽  
pp. 611-614
Author(s):  
Jia Rong Wang ◽  
Xiao Dong Xia ◽  
Zong Da Zhang ◽  
Han Yang

The successive approximation analog-to-digital converter (ADC) has been widely used in electronic devices due to the corresponding characteristics which are low cost, low power consumption, high accuracy and so on. This paper expounds a design of successive approximation A / D converter to show how to use TCL5615 which is a dual-channel serial 10-bit D/A converter (DAC) to make the conversion accuracy to reach 14-bit.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 165-172
Author(s):  
Dongge Deng ◽  
Mingzhi Zhu ◽  
Qiang Shu ◽  
Baoxu Wang ◽  
Fei Yang

It is necessary to develop a high homogeneous, low power consumption, high frequency and small-size shim coil for high precision and low-cost atomic spin gyroscope (ASG). To provide the shim coil, a multi-objective optimization design method is proposed. All structural parameters including the wire diameter are optimized. In addition to the homogeneity, the size of optimized coil, especially the axial position and winding number, is restricted to develop the small-size shim coil with low power consumption. The 0-1 linear programming is adopted in the optimal model to conveniently describe winding distributions. The branch and bound algorithm is used to solve this model. Theoretical optimization results show that the homogeneity of the optimized shim coil is several orders of magnitudes better than the same-size solenoid. A simulation experiment is also conducted. Experimental results show that optimization results are verified, and power consumption of the optimized coil is about half of the solenoid when providing the same uniform magnetic field. This indicates that the proposed optimal method is feasible to develop shim coil for ASG.


2016 ◽  
Vol 136 (11) ◽  
pp. 1555-1566 ◽  
Author(s):  
Jun Fujiwara ◽  
Hiroshi Harada ◽  
Takuya Kawata ◽  
Kentaro Sakamoto ◽  
Sota Tsuchiya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document