timing errors
Recently Published Documents


TOTAL DOCUMENTS

242
(FIVE YEARS 40)

H-INDEX

24
(FIVE YEARS 2)

Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1510
Author(s):  
Camille Le Le Coz ◽  
Arnold Heemink ◽  
Martin Verlaan ◽  
Nick van de van de Giesen

Many satellite-based estimates use gauge information for bias correction. In general, bias-correction methods are focused on the intensity error and do not explicitly correct possible position or timing errors. However, position and timing errors in rainfall estimates can also lead to errors in the rainfall occurrence or the intensity. This is especially true for localized rainfall events such as the convective rainstorms occurring during the rainy season in sub-Saharan Africa. We investigated the use of warping to correct such errors. The goal was to gauge-adjust satellite-based estimates with respect to the position and the timing of the rain event, instead of its intensity. Warping is a field-deformation method that transforms an image into another one. We compared two methods, spatial warping focusing on the position errors and time warping for the timing errors. They were evaluated on two case studies: a synthetic rainfall event represented by an ellipse and a rain event in southern Ghana during the monsoon season. In both cases, the two warping methods reduced significantly the respective targeted (position or timing) errors. In the southern Ghana case, the average position error was decreased by about 45 km by the spatial warping and the average timing error was decreased from more than 1 h to 0.2 h by the time warping. Both warping methods also improved the continuous statistics on the intensity: the correlation went from 0.18 to at least 0.62 after warping in the southern Ghana case. The spatial warping seems more interesting because of its positive impact on both position and timing errors.


Author(s):  
Yi Yang ◽  
Xiaodong Song ◽  
Adam T. Ringler

Abstract Clock accuracy is a basic parameter of any seismic station and has become increasingly important for seismology as the community seeks to refine structures and dynamic processes of the Earth. In this study, we measure the arrival time differences of moderate repeating earthquakes with magnitude 5.0–5.9 in the time range of 1991–2017 at the same seismic stations by cross-correlating their highly similar waveforms and thereby identify potential timing errors from the outliers of the measurements. The method has very high precision of about 10 ms and shows great potential to be used for routine inspection of the timing accuracy of historical and future digital seismic data. Here, we report 5131 probable cases of timing errors from 451 global and regional stations available from the Incorporated Research Institutions for Seismology Data Management Center, ranging from several tens of milliseconds to over 10 s. Clock accuracy seems to be a prevailing problem in permanent stations with long-running histories. Although most of the timing errors have already been tagged with low timing quality, there are quite a few exceptions, which call for greater attention from network operators and the seismological community. In addition, seismic studies, especially those on temporal changes of the Earth’s media from absolute arrival times, should be careful to avoid misinterpreting timing errors as temporal changes, which is indeed a problem in some previous studies of the Earth’s inner core boundary.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Joan López-Moliner ◽  
Cristina de la Malla

AbstractWe often need to interact with targets that move along arbitrary trajectories in the 3D scene. In these situations, information of parameters like speed, time-to-contact, or motion direction is required to solve a broad class of timing tasks (e.g., shooting, or interception). There is a large body of literature addressing how we estimate different parameters when objects move both in the fronto-parallel plane and in depth. However, we do not know to which extent the timing of interceptive actions is affected when motion-in-depth (MID) is involved. Unlike previous studies that have looked at the timing of interceptive actions using constant distances and fronto-parallel motion, we here use immersive virtual reality to look at how differences in the above-mentioned variables influence timing errors in a shooting task performed in a 3D environment. Participants had to shoot at targets that moved following different angles of approach with respect to the observer when those reached designated shooting locations. We recorded the shooting time, the temporal and spatial errors and the head’s position and orientation in two conditions that differed in the interval between the shot and the interception of the target’s path. Results show a consistent change in the temporal error across approaching angles: the larger the angle, the earlier the error. Interestingly, we also found different error patterns within a given angle that depended on whether participants tracked the whole target’s trajectory or only its end-point. These differences had larger impact when the target moved in depth and are consistent with underestimating motion-in-depth in the periphery. We conclude that the strategy participants use to track the target’s trajectory interacts with MID and affects timing performance.


2021 ◽  
Author(s):  
Ioannis Tsiokanos ◽  
George Papadimitriou ◽  
Dimitris Gizopoulos ◽  
Georgios Karakonstantis
Keyword(s):  

2021 ◽  
Vol 17 (3) ◽  
pp. 1-24
Author(s):  
Ioannis Tsiokanos ◽  
Jack Miskelly ◽  
Chongyan Gu ◽  
Maire O’neill ◽  
Georgios Karakonstantis

In recent years, physical unclonable functions (PUFs) have gained a lot of attention as mechanisms for hardware-rooted device authentication. While the majority of the previously proposed PUFs derive entropy using dedicated circuitry, software PUFs achieve this from existing circuitry in a system. Such software-derived designs are highly desirable for low-power embedded systems as they require no hardware overhead. However, these software PUFs induce considerable processing overheads that hinder their adoption in resource-constrained devices. In this article, we propose DTA-PUF, a novel, software PUF design that exploits the instruction- and data-dependent dynamic timing behaviour of pipelined cores to provide a reliable challenge-response mechanism without requiring any extra hardware. DTA-PUF accepts sequences of instructions as an input challenge and produces an output response based on the manifested timing errors under specific over-clocked settings. To lower the required processing effort, we systematically select instruction sequences that maximise error-rate. The application to a post-layout pipelined floating-point unit, which is implemented in 45 nm process technology, demonstrates the effectiveness and practicability of our PUF design. Finally, DTA-PUF requires up to 50× fewer instructions than existing software processor PUF designs, limiting processing costs and resulting in up to 26% power savings.


2021 ◽  
Author(s):  
Joan López-Moliner ◽  
Cristina Malla

Abstract We often need to interact with targets that move along arbitrary trajectories in the 3D scene. In these situations, information of parameters like speed, time-to-contact, or motion direction is required to solve a broad class of timing tasks (e.g., shooting, or interception). There is a large body of literature addressing how we estimate different parameters when objects move both in the fronto-parallel plane and in depth. However, we do not know to which extent the timing of interceptive actions is affected when there is MID involved. Unlike previous studies that have looked at the timing of interceptive actions using constant distances and fronto-parallel motion, we here use immersive virtual reality to look at how differences in the above-mentioned variables influence timing errors in a shooting task performed in a 3D environment. Participants had to shoot at targets that moved following different angles of approach with respect to the observer when those reached designated shooting locations. We recorded the shooting time, the temporal and spatial errors and the head’s position and orientation in two conditions that differed in the interval between the shot and the interception of the target’s path. Results show a consistent change of the temporal error across approaching angles: the larger the angle, the earlier the error. Interestingly, we also found different error patterns within a given angle that depended on whether participants tracked the whole target’s trajectory or only its end-point. These differences had larger impact when the target moved in depth and are consistent with underestimating motion-in-depth in the periphery. We conclude that the strategy participants use to track the trajectory interacts with MID and affects timing performance.


2021 ◽  
Vol 25 (5) ◽  
pp. 2599-2615
Author(s):  
Erin Towler ◽  
James L. McCreight

Abstract. Streamflow timing errors (in the units of time) are rarely explicitly evaluated but are useful for model evaluation and development. Wavelet-based approaches have been shown to reliably quantify timing errors in streamflow simulations but have not been applied in a systematic way that is suitable for model evaluation. This paper provides a step-by-step methodology that objectively identifies events, and then estimates timing errors for those events, in a way that can be applied to large-sample, high-resolution predictions. Step 1 applies the wavelet transform to the observations and uses statistical significance to identify observed events. Step 2 utilizes the cross-wavelet transform to calculate the timing errors for the events identified in step 1; this includes the diagnostic of model event hits, and timing errors are only assessed for hits. The methodology is illustrated using real and simulated stream discharge data from several locations to highlight key method features. The method groups event timing errors by dominant timescales, which can be used to identify the potential processes contributing to the timing errors and the associated model development needs. For instance, timing errors that are associated with the diurnal melt cycle are identified. The method is also useful for documenting and evaluating model performance in terms of defined standards. This is illustrated by showing the version-over-version performance of the National Water Model (NWM) in terms of timing errors.


Sign in / Sign up

Export Citation Format

Share Document