Device-Circuit Interaction and Performance Benchmarking of Tunnel Transistor-Based Ex-OR Gates for Energy Efficient Computing

2020 ◽  
Vol 29 (14) ◽  
pp. 2050235
Author(s):  
Sadulla Shaik

This paper explores the design and analysis of 20[Formula: see text]nm tunnel transistor-based Exclusive-OR (Ex-OR) gates and half-adder cells with circuit interaction (co-design) approach for energy efficient and reliable computing architectures at scaled supply voltages (50–300[Formula: see text]mV). TFETs have attracted much attention recently for energy efficient system designs. The circuit interaction is made possible for designing more consistent functional architectures at the minimum power supply of 50–300[Formula: see text]mV. Using this technique, the core computational blocks of basic adder blocks and Ex-OR gates are designed with TFET as a fundamental device and the whole design procedure is elaborated in this paper. The primary classifications of Tunnel FETs, viz. Homo-junction TFET (HoJn TFET) and Hetero-junction TFETs (HeJn TFET) are investigated thoroughly under different constraints specifically at the device configurations. By considering the above-mentioned subtypes of TFETs, three variants of Ex-OR primitive gates are modeled and are named with respect to the use of transistors as static complementary TFET-12T (SC12T), Transmission Gate logic-8T (TG8T) and Improved Transmission Gate logic-6T (ITG6T) Ex-OR gate designs. The benchmarking of the proposed gates is done using double-gate Si FinFET at 20[Formula: see text]nm technology. Amongst all the three proposed Ex-OR designs of SC12T, TG8T and ITG6T in addition to that of LVT and HVT FinFET/CMOS, only ITG6T is the designer’s choice by offering the minimum power consumption as well as high energy, improved choice compared to the other two styles of designs and also when robustness and reliability are taken into account, SC12T and TG8T designs are not providing the full swing of outputs. The minute glitch with that of ITG6T designs is a lesser reliability feature and for this the best alternative is TFET TG8T by providing suppressed over shoots and enhanced transition speed. From the performed multi simulations under different critical conditions and at supply voltage of 100[Formula: see text]mV, it is being demonstrated that the energy efficient circuit option is the SC12T and ITG6T Ex-OR designs which are validated with the steep slope characteristics of TFET’s and also these two designs offer reliability advantage. The major restrictions from the energy efficiency issues are eliminated and disclosed in the HoJn TFETs and HeJn TFET by using circuit co-design methodology and TFETs steep slope characteristics.

Author(s):  
Tonglin Shang ◽  
Greg Schoenau ◽  
Richard Burton

In this paper a hydraulic circuit that demonstrates both high dynamic performance and high energy efficiency is presented. The system uses a variable displacement pump which represents an energy efficient choice but can display poor transient response characteristics due to slow response of the pump. In this study, a DC motor is used to control the pump swashplate directly to increase the dynamic response of the pump. The problem with this arrangement is that the overshoot of the hydraulic motor is substantially increased. To reduce the effect of the overshoot, a bypass flow control system is utilized to bypass part of the pump flow during the transient. This allows the system to converge to steady state conditions more rapidly while maintaining an energy efficient system.


Author(s):  
Gülşah Karaca ◽  
Ekin Can Dolgun ◽  
Rukiye Mavuş ◽  
Mustafa Aktaş

2020 ◽  
Vol 10 (4) ◽  
pp. 471-477
Author(s):  
Merin Loukrakpam ◽  
Ch. Lison Singh ◽  
Madhuchhanda Choudhury

Background:: In recent years, there has been a high demand for executing digital signal processing and machine learning applications on energy-constrained devices. Squaring is a vital arithmetic operation used in such applications. Hence, improving the energy efficiency of squaring is crucial. Objective:: In this paper, a novel approximation method based on piecewise linear segmentation of the square function is proposed. Methods: Two-segment, four-segment and eight-segment accurate and energy-efficient 32-bit approximate designs for squaring were implemented using this method. The proposed 2-segment approximate squaring hardware showed 12.5% maximum relative error and delivered up to 55.6% energy saving when compared with state-of-the-art approximate multipliers used for squaring. Results: The proposed 4-segment hardware achieved a maximum relative error of 3.13% with up to 46.5% energy saving. Conclusion:: The proposed 8-segment design emerged as the most accurate squaring hardware with a maximum relative error of 0.78%. The comparison also revealed that the 8-segment design is the most efficient design in terms of error-area-delay-power product.


2020 ◽  
Vol 13 (2) ◽  
pp. 168-172
Author(s):  
Ravi Kumar Poluru ◽  
M. Praveen Kumar Reddy ◽  
Syed Muzamil Basha ◽  
Rizwan Patan ◽  
Suresh Kallam

Background:Recently Wireless Sensor Network (WSN) is a composed of a full number of arbitrarily dispensed energy-constrained sensor nodes. The sensor nodes help in sensing the data and then it will transmit it to sink. The Base station will produce a significant amount of energy while accessing the sensing data and transmitting data. High energy is required to move towards base station when sensing and transmitting data. WSN possesses significant challenges like saving energy and extending network lifetime. In WSN the most research goals in routing protocols such as robustness, energy efficiency, high reliability, network lifetime, fault tolerance, deployment of nodes and latency. Most of the routing protocols are based upon clustering has been proposed using heterogeneity. For optimizing energy consumption in WSN, a vital technique referred to as clustering.Methods:To improve the lifetime of network and stability we have proposed an Enhanced Adaptive Distributed Energy-Efficient Clustering (EADEEC).Results:In simulation results describes the protocol performs better regarding network lifetime and packet delivery capacity compared to EEDEC and DEEC algorithm. Stability period and network lifetime are improved in EADEEC compare to DEEC and EDEEC.Conclusion:The EADEEC is overall Lifetime of a cluster is improved to perform the network operation: Data transfer, Node Lifetime and stability period of the cluster. EADEEC protocol evidently tells that it improved the throughput, extended the lifetime of network, longevity, and stability compared with DEEC and EDEEC.


2021 ◽  
Author(s):  
Yongbiao Zhai ◽  
Zihao Feng ◽  
Ye Zhou ◽  
Su-Ting Han

We review the physics, design, and optimization of four steep-slope transistors and demonstrate their potential and drawbacks.


2021 ◽  
pp. 102867
Author(s):  
Niels Lassen ◽  
Tine Hegli ◽  
Tor Helge Dokka ◽  
Terje Løvold ◽  
Kristian Edwards ◽  
...  

2013 ◽  
Vol 769 ◽  
pp. 319-326 ◽  
Author(s):  
Martin Beck ◽  
Tilo Sielaff

Industrial enterprises are increasingly driven to tap the potentials of energy efficiency in existing and future production sites. The challenge is to identify cost-efficient levers for a low energy demand in the linked energy system of production machines and peripheral devices. Considering enabling technologies for energy efficiency and energy recovery in a cascaded energy network with energy storages this paper presents an approach towards energy and cost-efficient system configurations for production sites. An outlook will be given on the research center eta-factory for energy efficient factories at the PTW, TU Darmstadt.


Author(s):  
Chenggang Yuan ◽  
Min Pan ◽  
Andrew Plummer

Digital hydraulics is a new technology providing an alternative to conventional proportional or servovalve-controlled systems in the area of fluid power. Research is driven by the need for highly energy efficient hydraulic machines but is relatively immature compared to other energy-saving technologies. Digital hydraulic applications, such as digital pumps, digital valves and actuators, switched inertance hydraulic converters (SIHCs) and digital hydraulic power management systems, all promise high energy efficiency. This review introduces the development of SIHCs and evaluates the device configurations, performance and control strategies that are found in current SIHC research, particularly focusing on the work being undertaken in last 15 years. The designs for highspeed switching valves are evaluated, and their advantages and limitations are discussed. This article concludes with some suggestions for the future development of SIHCs.


Sign in / Sign up

Export Citation Format

Share Document