transmission gate
Recently Published Documents


TOTAL DOCUMENTS

149
(FIVE YEARS 29)

H-INDEX

10
(FIVE YEARS 3)

2021 ◽  
pp. 273-284
Author(s):  
Sumit Raj ◽  
Utkarsh Chaurasia ◽  
Aayush Bahukhandi ◽  
Poornima Mittal

2021 ◽  
pp. 725-736
Author(s):  
C. S. Manikandababu ◽  
M. Jagadeeswari ◽  
S. Manju ◽  
M. Aiswarya

Author(s):  
Aswini Valluri ◽  
◽  
Sarada Musala ◽  
Muralidharan Jayabalan ◽  
◽  
...  

There is an immense necessity of several kilo bytes of embedded memory for Biomedical systems which typically operate in the sub-threshold domain with perfect efficiency. SRAMs (Static Random Access Memory) dominates the total power consumption and the overall silicon area, as 70% of the die has been occupied by them. This brief proposes the design of a Transmission gate-based SRAM cell for Bio medical application eliminating the use of peripheral circuitry during the read operation. It commences the read operation directly with the help of Transmission gates with which the data stored in the storage nodes can be read, instead of using the precharge and sense amplifier circuits which suits better for the implantable devices. This topology offers smaller area, reduced delay, low power consumption as well as improved data stabilization in the read operation. The cell is implemented in 45nm CMOS technology operated at 0.45V.


Author(s):  
Nakul C. Kubsad

Abstract: Full adder circuit is one among the fundamental and necessary digital part. The full adder is be a part of microprocessors, digital signal processors etc. It's needed for the arithmetic and logical operations. Full adder design enhancements are necessary for recent advancement. The requirement of an adder cell is to provide high speed, consume low power and provide high voltage swing. This paper analyses and compares 3 adders with completely different logic designs (Conventional, transmission gate & pseudo NMOS) for transistor count, power dissipation and delay. The simulation is performed in Cadence virtuoso tool with accessible GPDK – 180nm kit. Transmission gate full adder has sheer advantage of high speed, fewer space and also it shows higher performance in terms of delay. Keywords: Delay, power dissipation, voltage, transistor sizing.


Author(s):  
Harekrishna Kumar ◽  
V.K Tomar

In this paper, a 9T SRAM cell with low power (LP9T) and improved performance has been proposed. This cell is free from half-select issue and works with single-ended read and differential write operation in the sub-threshold region. To evaluate the relative performance, the obtained characteristics of LP9T SRAM cell are compared with other state-of-the-art designs at 45-nm technology node. The read and write power dissipation of LP9T SRAM cell is reduced by [Formula: see text] and [Formula: see text] as compared to Conv.6T SRAM cell. In proposed cell, leakage power is reduced by [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] as compared to conventional 6T (Conv.6T), low power (LP8T), transmission gate 8T(TG8T), transmission gate 9T (TG9T), Schmitt trigger 9T (ST9T), and positive feedback control 10T (PFC10T) SRAM cells. This reduction in leakage power is attributed to stacking effect. LP9T SRAM cell also exhibits significant improvement in read/write access time as compared to all considered cells. Also, the read and write energy of proposed cell is lowest among all considered cells. The LP9T SRAM cell has [Formula: see text] and [Formula: see text] higher read and write stability as compared to Conv.6T SRAM cell. Proposed SRAM cell has the highest value of ON to OFF current ratio ([Formula: see text]) which signifies the highest bit-cell density among all considered cells. The LP9T SRAM cell occupies [Formula: see text] large area as compared to Conv.6T SRAM cell. The overall quality of SRAM cell is calculated through the electrical quality metric (EQM). It is observed that LP9T SRAM cell has the highest value of EQM in comparison to considered cells at 0.3[Formula: see text]V supply voltage.


Author(s):  
M. Naga Gowtham, P.S Hari Krishna Reddy, K Jeevitha, K Hari Kishore, E Raghuveera, Shaik Razia

In this paper, a hybrid 1-bit adder and 1-bit Subtractor designs are implemented. The hybrid adder circuit is constructed using CMOS (complementary metal oxide semiconductor) logic along with pass transistor logic. The design can be extended 16 and 32 bits lately. The proposed full adder circuit is compared with the existing conventional adders in terms of power, delay and area in order to obtain a better circuit that serves the present day needs of people. The existing 1-bit hybrid adder uses EXNOR logic combined with the transmission gate logic. For a supply voltage of 1.8V the average power consumption (4.1563 µW) which is extremely low with moderately low delay (224 ps) resulting because of the deliberate incorporation of very weak CMOS inverters coupled with strong transmission gates. At 1.2V supply the power and delay were recorded to be 1.17664 µW and 91.3 ps. The design was implemented using 1-bit which can also be extended into a 32-bit design later. The designed implementation offers a better performance in terms of power and speed compared to the existing full adder design styles. The circuits were implemented in DSCH2 and Microwind tools respectively. The parameters such as power, delay, layout area and speed of the proposed circuit design is compared with pass transistor logic, adiabatic logic, transmission gate adder and so on. The circuit is also designed with a decrease in transistors in order to get the better results. Full Subtractor, a combinational digital circuit which performs 1-bit subtraction with borrow in is designed as a part of this project. The main aim behind this part of the project is to design a 1-bit full Subtractor using CMOS technology with reduced number of transistors and hence the efficiency in terms of area, power and speed have been calculated is designed using 8,10,15and 16 transistors. The parameters were calculated in each case and the results have been tabulated.


Author(s):  
M. Naga Gowtham Et.al

In this paper, a hybrid 1-bit adder and 1-bit Subtractor designs are implemented. The hybrid adder circuit is constructed using CMOS (complementary metal oxide semiconductor) logic along with pass transistor logic. The design can be extended 16 and 32 bits lately. The proposed full adder circuit is compared with the existing conventional adders in terms of power, delay and area in order to obtain a better circuit that serves the present day needs of people. The existing 1-bit hybrid adder uses EXNOR logic combined with the transmission gate logic. For a supply voltage of 1.8V the average power consumption (4.1563 µW) which is extremely low with moderately low delay (224 ps) resulting because of the deliberate incorporation of very weak CMOS inverters coupled with strong transmission gates. At 1.2V supply the power and delay were recorded to be 1.17664 µW and 91.3 ps. The design was implemented using 1-bit which can also be extended into a 32-bit design later. The designed implementation offers a better performance in terms of power and speed compared to the existing full adder design styles. The circuits were implemented in DSCH2 and Microwind tools respectively. The parameters such as power, delay, layout area and speed of the proposed circuit design is compared with pass transistor logic, adiabatic logic, transmission gate adder and so on. The circuit is also designed with a decrease in transistors in order to get the better results. Full Subtractor, a combinational digital circuit which performs 1-bit subtraction with borrow in is designed as a part of this project. The main aim behind this part of the project is to design a 1-bit full Subtractor using CMOS technology with reduced number of transistors and hence the efficiency in terms of area, power and speed have been calculated is designed using 8,10,15and 16 transistors. The parameters were calculated in each case and the results have been tabulated.


Sign in / Sign up

Export Citation Format

Share Document