scholarly journals CLUSTER SYNCHRONIZATION IN THREE-DIMENSIONAL LATTICES OF DIFFUSIVELY COUPLED OSCILLATORS

2003 ◽  
Vol 13 (04) ◽  
pp. 755-779 ◽  
Author(s):  
VLADIMIR N. BELYKH ◽  
IGOR V. BELYKH ◽  
MARTIN HASLER ◽  
KONSTANTIN V. NEVIDIN

Cluster synchronization modes of continuous time oscillators that are diffusively coupled in a three-dimensional (3-D) lattice are studied in the paper via the corresponding linear invariant manifolds. Depending in an essential way on the number of oscillators composing the lattice in three volume directions, the set of possible regimes of spatiotemporal synchronization is examined. Sufficient conditions of the stability of cluster synchronization are obtained analytically for a wide class of coupled dynamical systems with complicated individual behavior. Dependence of the necessary coupling strengths for the onset of global synchronization on the number of oscillators in each lattice direction is discussed and an approximative formula is proposed. The appearance and order of stabilization of the cluster synchronization modes with increasing coupling between the oscillators are revealed for 2-D and 3-D lattices of coupled Lur'e systems and of coupled Rössler oscillators.

1999 ◽  
Vol 390 ◽  
pp. 127-150 ◽  
Author(s):  
V. A. VLADIMIROV ◽  
H. K. MOFFATT ◽  
K. I. ILIN

The equations of magnetohydrodynamics (MHD) of an ideal fluid have two families of topological invariants: the magnetic helicity invariants and the cross-helicity invariants. It is first shown that these invariants define a natural foliation (described as isomagnetovortical, or imv for short) in the function space in which solutions {u(x, t), h(x, t)} of the MHD equations reside. A relaxation process is constructed whereby total energy (magnetic plus kinetic) decreases on an imv folium (all magnetic and cross-helicity invariants being thus conserved). The energy has a positive lower bound determined by the global cross-helicity, and it is thus shown that a steady state exists having the (arbitrarily) prescribed families of magnetic and cross-helicity invariants.The stability of such steady states is considered by an appropriate generalization of (Arnold) energy techniques. The first variation of energy on the imv folium is shown to vanish, and the second variation δ2E is constructed. It is shown that δ2E is a quadratic functional of the first-order variations δ1u, δ1h of u and h (from a steady state U(x), H(x)), and that δ2E is an invariant of the linearized MHD equations. Linear stability is then assured provided δ2E is either positive-definite or negative-definite for all imv perturbations. It is shown that the results may be equivalently obtained through consideration of the frozen-in ‘modified’ vorticity field introduced in Part 1 of this series.Finally, the general stability criterion is applied to a variety of classes of steady states {U(x), H(x)}, and new sufficient conditions for stability to three-dimensional imv perturbations are obtained.


2020 ◽  
Vol 66 (2) ◽  
pp. 160-181
Author(s):  
V. Z. Grines ◽  
E. Ya. Gurevich ◽  
O. V. Pochinka

This review presents the results of recent years on solving of the Palis problem on finding necessary and sufficient conditions for the embedding of Morse-Smale cascades in topological flows. To date, the problem has been solved by Palis for Morse-Smale diffeomorphisms given on manifolds of dimension two. The result for the circle is a trivial exercise. In dimensions three and higher new effects arise related to the possibility of wild embeddings of closures of invariant manifolds of saddle periodic points that leads to additional obstacles for Morse-Smale diffeomorphisms to embed in topological flows. The progress achieved in solving of Paliss problem in dimension three is associated with the recently obtained complete topological classification of Morse-Smale diffeomorphisms on three-dimensional manifolds and the introduction of new invariants describing the embedding of separatrices of saddle periodic points in a supporting manifold. The transition to a higher dimension requires the latest results from the topology of manifolds. The necessary topological information, which plays key roles in the proofs, is also presented in the survey.


2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Shuang Guo ◽  
Weihua Jiang

A class of three-dimensional Gause-type predator-prey model with delay is considered. Firstly, a group of sufficient conditions for the existence of Hopf bifurcation is obtained via employing the polynomial theorem by analyzing the distribution of the roots of the associated characteristic equation. Secondly, the direction of the Hopf bifurcation and the stability of the bifurcated periodic solutions are determined by applying the normal form method and the center manifold theorem. Finally, some numerical simulations are carried out to illustrate the obtained results.


2000 ◽  
Vol 4 (3) ◽  
pp. 245-256 ◽  
Author(s):  
Vladimir belykh ◽  
Igor Blykh ◽  
Nikolai Komrakov ◽  
Erik Moseklide

This paper presents an analysis of the invariant manifolds for a general family of locally coupled map lattices. These manifolds define the different types of full, partial, and anti-phase chaotic synchronization that can arise in discrete dynamical systems. Existence of various invariant manifolds, self-similarity as well as orderings and embeddings of the manifolds of a coupled map array are established. A general variational equation for the stability analysis of invariant manifolds is derived, and stability conditions for full and partial chaotic synchronization of concrete coupled maps are obtained. The general results are illustrated through examples of three coupled two-dimensional standard maps with damping.


2018 ◽  
Vol 28 (02) ◽  
pp. 1850024 ◽  
Author(s):  
Lei Wang ◽  
Xiao-Song Yang

For a class of three-dimensional piecewise affine systems, this paper focuses on the existence of homoclinic cycles and the phenomena of homoclinic bifurcation leading to periodic orbits. Based on the spatial location relation between the invariant manifolds of subsystems and the switching manifold, a concise necessary and sufficient condition for the existence of homoclinic cycles is obtained. Then the homoclinic bifurcation is studied and the sufficient conditions for the birth of a periodic orbit are obtained. Furthermore, the sufficient conditions are obtained for the periodic orbit to be a sink, a source or a saddle. As illustrations, several concrete examples are presented.


Author(s):  
Sunhua Huang ◽  
Bin Wang

This study is interested in the stability and stabilization of a class of fractional-order nonlinear systems with Caputo derivatives. Based on the properties of the Laplace transform, Mittag-Leffler function, Jordan decomposition, and Grönwall's inequality, some sufficient conditions that ensure local stability and stabilization of a class of fractional-order nonlinear systems under the Caputo derivative with 1<α<2 are presented. Finally, typical instances, including the fractional-order three-dimensional (3D) nonlinear system and the fractional-order four-dimensional (4D) nonlinear hyperchaos, are implemented to demonstrate the feasibility and validity of the proposed method.


Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 706
Author(s):  
Yue Gao ◽  
Dong Ding ◽  
Ze Tang

This paper is devoted to investigating the cluster synchronization of a class of nonlinearly coupled Lur’e networks. A novel adaptive pinning control strategy is introduced, which is beneficial to achieve cluster synchronization of the Lur’e systems in the same cluster and weaken the directed connections of the Lur’e systems in different clusters. The coupled complex networks consisting of not only identical Lur’e systems but also nonidentical Lur’e systems are discussed, respectively. Based on the S-procedure and the concept of acceptable nonlinear continuous function class, sufficient conditions are obtained which prove that the complex dynamical networks can be pinned to the heterogeneous solutions for any initial values. In addition, effective and comparatively small control strengths are acquired by the designing of the adaptive updating algorithm. Finally, a numerical simulation is presented to illustrate the proposed theorems and the control schemes.


2011 ◽  
Vol 24 (1) ◽  
pp. 105-117
Author(s):  
Asma Djerrai ◽  
Ilhem Djellit

Smooth 3D maps have been a focus of study in a wide range of research fields. Their Properties are investigated qualitatively and numerically. These maps show qualitatively interesting types of bifurcations than those exhibited by generic smooth planar maps. We present a theoretical framework for analyzing three-dimensional smooth coupling maps by finding the stability criteria for periodic orbits and characterizing the system behaviors with the tools of nonlinear dynamics relative to bifurcation in the parameter plane, invariant manifolds, critical manifolds, chaotic attractors. We also show by numerical simulation bifurcations that can occur in such maps. By an analytical and numerical exploration we give some properties and characteristics, since this class of three-dimensional dynamics is associated with the properties of one-dimensional maps. There is an interesting passage from the one-dimensional endomorphisms to the three-dimensional endomorphisms.


2011 ◽  
Vol 2011 ◽  
pp. 1-23 ◽  
Author(s):  
Jianwen Feng ◽  
Jingyi Wang ◽  
Chen Xu ◽  
Francis Austin

We consider a method for driving general complex networks into prescribed cluster synchronization patterns by using pinning control. The coupling between the vertices of the network is nonlinear, and sufficient conditions are derived analytically for the attainment of cluster synchronization. We also propose an effective way of adapting the coupling strengths of complex networks. In addition, the critical combination of the control strength, the number of pinned nodes and coupling strength in each cluster are given by detailed analysis cluster synchronization of a special topological structure complex network. Our theoretical results are illustrated by numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document