PERSISTENCE AND GLOBAL STABILITY IN A PREDATOR-PREY SYSTEM WITH DELAY

2006 ◽  
Vol 16 (10) ◽  
pp. 2915-2922 ◽  
Author(s):  
MANUEL GÁMEZ ◽  
CLOTILDE MARTÍNEZ

In this paper, several sufficient conditions are established for the persistence and extinction in a Lotka–Volterra system with time delay. Based on the use of Lyapunov functionals techniques, necessary and sufficient conditions are also given for global asymptotic stability of the positive equilibrium for autonomous systems.

2004 ◽  
Vol 46 (1) ◽  
pp. 121-141 ◽  
Author(s):  
Rui Xu ◽  
Lansun Chen ◽  
M. A. J. Chaplain

AbstractA delayed predator-prey system with Holling type III functional response is investigated. It is proved that the system is uniformly persistent under some appropriate conditions. By means of suitable Lyapunov functionals, sufficient conditions are derived for the local and global asymptotic stability of a positive equilibrium of the system. Numerical simulations are presented to illustrate the feasibility of our main results.


2017 ◽  
Vol 10 (03) ◽  
pp. 1750032 ◽  
Author(s):  
Wei Liu ◽  
Yaolin Jiang

In this paper, a differential-algebraic predator–prey system with time delay is investigated, where the time delay is regarded as a parameter. By analyzing the corresponding characteristic equations, the local stability of the positive equilibrium and the existence of Hopf bifurcation are demonstrated. Furthermore, the explicit formulae which determine the stability, direction and other properties of bifurcating periodic solutions are obtained by applying the normal form theory and the center manifold argument. At last, some numerical simulations are carried out to illustrate the feasibility of our main results.


2012 ◽  
Vol 472-475 ◽  
pp. 2940-2943
Author(s):  
Zhi Chao Jiang ◽  
Hui Chen

A stage-structured predator-prey system with time delay is considered. By analyzing the characteristic equations, the local stability of a positive equilibrium and a boundary equilibrium is discussed, respectively. Furthermore, it is proved that the system undergoes a Hopf bifurcation at the positive equilibrium when . The estimation of the length of delay to preserve stability has also been calculated.


2019 ◽  
Vol 17 (1) ◽  
pp. 141-159 ◽  
Author(s):  
Zaowang Xiao ◽  
Zhong Li ◽  
Zhenliang Zhu ◽  
Fengde Chen

Abstract In this paper, we consider a Beddington-DeAngelis predator-prey system with stage structure for predator and time delay incorporating prey refuge. By analyzing the characteristic equations, we study the local stability of the equilibrium of the system. Using the delay as a bifurcation parameter, the model undergoes a Hopf bifurcation at the coexistence equilibrium when the delay crosses some critical values. After that, by constructing a suitable Lyapunov functional, sufficient conditions are derived for the global stability of the system. Finally, the influence of prey refuge on densities of prey species and predator species is discussed.


2012 ◽  
Vol 2012 ◽  
pp. 1-12
Author(s):  
Huilan Wang ◽  
Zhengqiu Zhang ◽  
Weiping Zhou

By using continuation theorem of coincidence degree theory, sufficient conditions of the existence of positive periodic solutions are obtained for a generalized predator-prey system with diffusion and delays. In this paper, we construct a V-function to make the prior estimation for periodic solutions, which makes the discussion more concise. Moreover, to compute the mapping's topological degree, a polynomial function matrix is constructed straightforwardly as a homotopic mapping for the generalized one, which improves the methods of computation on topological degree for a generalized mapping.


2013 ◽  
Vol 06 (01) ◽  
pp. 1250064 ◽  
Author(s):  
XIANGLAI ZHUO

The dynamical behaviors of a two-species discrete ratio-dependent predator–prey system are considered. Some sufficient conditions for the local stability of the equilibria is obtained by using the linearization method. Further, we also obtain a new sufficient condition to ensure that the positive equilibrium is globally asymptotically stable by using an iteration scheme and the comparison principle of difference equations, which generalizes what paper [G. Chen, Z. Teng and Z. Hu, Analysis of stability for a discrete ratio-dependent predator–prey system, Indian J. Pure Appl. Math.42(1) (2011) 1–26] has done. The method given in this paper is new and very resultful comparing with papers [H. F. Huo and W. T. Li, Existence and global stability of periodic solutions of a discrete predator–prey system with delays, Appl. Math. Comput.153 (2004) 337–351; X. Liao, S. Zhou and Y. Chen, On permanence and global stability in a general Gilpin–Ayala competition predator–prey discrete system, Appl. Math. Comput.190 (2007) 500–509] and it can also be applied to study the global asymptotic stability for general multiple species discrete population systems. At the end of this paper, we present an open question.


2009 ◽  
Vol 33 (1-2) ◽  
pp. 267-281 ◽  
Author(s):  
Lingshu Wang ◽  
Rui Xu ◽  
Guanghui Feng

Sign in / Sign up

Export Citation Format

Share Document