LIMIT CYCLE BIFURCATIONS IN NEAR-HAMILTONIAN SYSTEMS BY PERTURBING A NILPOTENT CENTER

2008 ◽  
Vol 18 (10) ◽  
pp. 3013-3027 ◽  
Author(s):  
MAOAN HAN ◽  
JIAO JIANG ◽  
HUAIPING ZHU

As we know, Hopf bifurcation is an important part of bifurcation theory of dynamical systems. Almost all known works are concerned with the bifurcation and number of limit cycles near a nondegenerate focus or center. In the present paper, we study a general near-Hamiltonian system on the plane whose unperturbed system has a nilpotent center. We obtain an expansion for the first order Melnikov function near the center together with a computing method for the first coefficients. Using these coefficients, we obtain a new bifurcation theorem concerning the limit cycle bifurcation near the nilpotent center. An interesting application example & a cubic system having five limit cycles & is also presented.

2012 ◽  
Vol 22 (12) ◽  
pp. 1250296 ◽  
Author(s):  
MAOAN HAN

In the study of the perturbation of Hamiltonian systems, the first order Melnikov functions play an important role. By finding its zeros, we can find limit cycles. By analyzing its analytical property, we can find its zeros. The main purpose of this article is to summarize some methods to find its zeros near a Hamiltonian value corresponding to an elementary center, nilpotent center or a homoclinic or heteroclinic loop with hyperbolic saddles or nilpotent critical points through the asymptotic expansions of the Melnikov function at these values. We present a series of results on the limit cycle bifurcation by using the first coefficients of the asymptotic expansions.


2020 ◽  
Vol 30 (09) ◽  
pp. 2050126
Author(s):  
Li Zhang ◽  
Chenchen Wang ◽  
Zhaoping Hu

From [Han et al., 2009a] we know that the highest order of the nilpotent center of cubic Hamiltonian system is [Formula: see text]. In this paper, perturbing the Hamiltonian system which has a nilpotent center of order [Formula: see text] at the origin by cubic polynomials, we study the number of limit cycles of the corresponding cubic near-Hamiltonian systems near the origin. We prove that we can find seven and at most seven limit cycles near the origin by the first-order Melnikov function.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Huanhuan Tian ◽  
Maoan Han

We study the expansions of the first order Melnikov functions for general near-Hamiltonian systems near a compound loop with a cusp and a nilpotent saddle. We also obtain formulas for the first coefficients appearing in the expansions and then establish a bifurcation theorem on the number of limit cycles. As an application example, we give a lower bound of the maximal number of limit cycles for a polynomial system of Liénard type.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1425
Author(s):  
Pan Liu ◽  
Maoan Han

In this paper, we study limit cycle bifurcation near a cuspidal loop for a general near-Hamiltonian system by using expansions of the first order Melnikov functions. We give a method to compute more coefficients of the expansions to find more limit cycles near the cuspidal loop. As an application example, we considered a polynomial near-Hamiltonian system and found 12 limit cycles near the cuspidal loop and the center.


2016 ◽  
Vol 26 (12) ◽  
pp. 1650204 ◽  
Author(s):  
Jihua Yang ◽  
Liqin Zhao

This paper deals with the limit cycle bifurcations for piecewise smooth Hamiltonian systems. By using the first order Melnikov function of piecewise near-Hamiltonian systems given in [Liu & Han, 2010], we give a lower bound and an upper bound of the number of limit cycles that bifurcate from the period annulus between the center and the generalized eye-figure loop up to the first order of Melnikov function.


2021 ◽  
Vol 31 (09) ◽  
pp. 2150123
Author(s):  
Xiaoyan Chen ◽  
Maoan Han

In this paper, we study Poincaré bifurcation of a class of piecewise polynomial systems, whose unperturbed system has a period annulus together with two invariant lines. The main concerns are the number of zeros of the first order Melnikov function and the estimation of the number of limit cycles which bifurcate from the period annulus under piecewise polynomial perturbations of degree [Formula: see text].


2018 ◽  
Vol 28 (02) ◽  
pp. 1850026
Author(s):  
Yuanyuan Liu ◽  
Feng Li ◽  
Pei Dang

We consider the bifurcation in a class of piecewise polynomial systems with piecewise polynomial perturbations. The corresponding unperturbed system is supposed to possess an elementary or nilpotent critical point. First, we present 17 cases of possible phase portraits and conditions with at least one nonsmooth periodic orbit for the unperturbed system. Then we focus on the two specific cases with two heteroclinic orbits and investigate the number of limit cycles near the loop by means of the first-order Melnikov function, respectively. Finally, we take a quartic piecewise system with quintic piecewise polynomial perturbation as an example and obtain that there can exist ten limit cycles near the heteroclinic loop.


2019 ◽  
Vol 29 (12) ◽  
pp. 1950160
Author(s):  
Zhihui Fan ◽  
Zhengdong Du

In this paper, we discuss the bifurcation of periodic orbits in planar piecewise smooth systems with discontinuities on finitely many smooth curves intersecting at the origin. We assume that the unperturbed system has either a limit cycle or a periodic annulus such that the limit cycle or each periodic orbit in the periodic annulus crosses every switching curve transversally multiple times. When the unperturbed system has a limit cycle, we give the conditions for its stability and persistence. When the unperturbed system has a periodic annulus, we obtain the expression of the first order Melnikov function and establish sufficient conditions under which limit cycles can bifurcate from the annulus. As an example, we construct a concrete nonlinear planar piecewise smooth system with three zones with 11 limit cycles bifurcated from the periodic annulus.


2015 ◽  
Vol 25 (06) ◽  
pp. 1550080 ◽  
Author(s):  
Chaoxiong Du ◽  
Yirong Liu ◽  
Qi Zhang

Limit cycle bifurcation problem of Kolmogorov model is interesting and significant both in theory and applications. In this paper, we will focus on investigating limit cycles for a class of quartic Kolmogorov model with three positive equilibrium points. Perturbed model can bifurcate three small limit cycles near (1, 2) or (2, 1) under a certain condition and can bifurcate one limit cycle near (1, 1). In addition, we have given some examples of simultaneous Hopf bifurcation and the structure of limit cycles bifurcated from three positive equilibrium points. The limit cycle bifurcation problem for Kolmogorov model with several positive equilibrium points are less seen in published references. Our result is good and interesting.


Sign in / Sign up

Export Citation Format

Share Document