A HYPERCHAOTIC CHUA SYSTEM

2009 ◽  
Vol 19 (11) ◽  
pp. 3823-3828 ◽  
Author(s):  
PAULO C. RECH ◽  
HOLOKX A. ALBUQUERQUE

In this paper, we report a new four-dimensional autonomous hyperchaotic system, constructed from a Chua system where the piecewise-linear function usually taken to describe the nonlinearity of the Chua diode has been replaced by a cubic polynomial. Analytical and numerical procedures are conducted to study the dynamical behavior of the proposed new hyperchaotic system.

2005 ◽  
Vol 15 (01) ◽  
pp. 1-49 ◽  
Author(s):  
AKIO TSUNEDA

In this tutorial paper, we present some interesting phenomena from Chua's equation with a cubic nonlinearity as well as that with a piecewise-linear characteristic, where a cubic polynomial approximates the original three-segment piecewise-linear function. A gallery of attractors and bifurcation diagrams obtained by numerical simulations are presented. We hope this will motivate researchers to study the smooth version of this extremely simple yet versatile equation with more than 20 attractors.


Author(s):  
Noam Goldberg ◽  
Steffen Rebennack ◽  
Youngdae Kim ◽  
Vitaliy Krasko ◽  
Sven Leyffer

AbstractWe consider a nonconvex mixed-integer nonlinear programming (MINLP) model proposed by Goldberg et al. (Comput Optim Appl 58:523–541, 2014. 10.1007/s10589-014-9647-y) for piecewise linear function fitting. We show that this MINLP model is incomplete and can result in a piecewise linear curve that is not the graph of a function, because it misses a set of necessary constraints. We provide two counterexamples to illustrate this effect, and propose three alternative models that correct this behavior. We investigate the theoretical relationship between these models and evaluate their computational performance.


2011 ◽  
Vol 21 (03) ◽  
pp. 725-735 ◽  
Author(s):  
K. SRINIVASAN ◽  
I. RAJA MOHAMED ◽  
K. MURALI ◽  
M. LAKSHMANAN ◽  
SUDESHNA SINHA

A novel time delayed chaotic oscillator exhibiting mono- and double scroll complex chaotic attractors is designed. This circuit consists of only a few operational amplifiers and diodes and employs a threshold controller for flexibility. It efficiently implements a piecewise linear function. The control of piecewise linear function facilitates controlling the shape of the attractors. This is demonstrated by constructing the phase portraits of the attractors through numerical simulations and hardware experiments. Based on these studies, we find that this circuit can produce multi-scroll chaotic attractors by just introducing more number of threshold values.


1994 ◽  
Author(s):  
Hongyu Liu ◽  
Yialei Wang ◽  
Peimao Sun ◽  
Tianyun Zhang ◽  
Rong Jiang

Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-23 ◽  
Author(s):  
Li Xiong ◽  
Zhenlai Liu ◽  
Xinguo Zhang

This paper is devoted to introduce a novel fourth-order hyperchaotic system. The hyperchaotic system is constructed by adding a linear feedback control level based on a modified Lorenz-like chaotic circuit with reduced number of amplifiers. The local dynamical entities, such as the basic dynamical behavior, the divergence, the eigenvalue, and the Lyapunov exponents of the new hyperchaotic system, are all investigated analytically and numerically. Then, an active control method is derived to achieve global chaotic synchronization of the novel hyperchaotic system through making the synchronization error system asymptotically stable at the origin based on Lyapunov stability theory. Next, the proposed novel hyperchaotic system is applied to construct another new hyperchaotic system with circuit deformation and design a new hyperchaotic secure communication circuit. Furthermore, the implementation of two novel electronic circuits of the proposed hyperchaotic systems is presented, examined, and realized using physical components. A good qualitative agreement is shown between the simulations and the experimental results around 500 kHz and below 1 MHz.


1993 ◽  
Vol 03 (02) ◽  
pp. 471-481 ◽  
Author(s):  
A. A. A. NASSER ◽  
E. E. HOSNY ◽  
M. I. SOBHY

This paper includes a method for detecting the maximum possible range of bifurcations based upon the multilevel oscillation technique. An application of the method to Chua's circuit, and new simulation results using the slope of the piecewise-linear function as a bifurcation parameter are presented.


Sign in / Sign up

Export Citation Format

Share Document