STABILITY AND HOPF BIFURCATION FOR A THREE-SPECIES REACTION–DIFFUSION PREDATOR–PREY SYSTEM WITH TWO DELAYS

2013 ◽  
Vol 23 (12) ◽  
pp. 1350194
Author(s):  
GAO-XIANG YANG ◽  
JIAN XU

In this paper, a three-species predator–prey system with diffusion and two delays is investigated. By taking the sum of two delays as a bifurcation parameter, it is found that the spatially homogeneous Hopf bifurcation can occur as the sum of two delays crosses a critical value. The direction of Hopf bifurcation and the stability of the bifurcating periodic solution are obtained by employing the center manifold theorem and the normal form theory. In addition, some numerical simulations are also given to illustrate the theoretical analysis.

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Fengying Wei ◽  
Lanqi Wu ◽  
Yuzhi Fang

A kind of delayed predator-prey system with harvesting is considered in this paper. The influence of harvesting and delay is investigated. Our results show that Hopf bifurcations occur as the delayτpasses through critical values. By using of normal form theory and center manifold theorem, the direction of Hopf bifurcation and the stability of the bifurcating periodic solutions are obtained. Finally, numerical simulations are given to support our theoretical predictions.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Juan Liu ◽  
Changwei Sun ◽  
Yimin Li

This paper is concerned with a Gause-type predator-prey system with two delays. Firstly, we study the stability and the existence of Hopf bifurcation at the coexistence equilibrium by analyzing the distribution of the roots of the associated characteristic equation. A group of sufficient conditions for the existence of Hopf bifurcation is obtained. Secondly, an explicit formula for determining the stability and the direction of periodic solutions that bifurcate from Hopf bifurcation is derived by using the normal form theory and center manifold argument. Finally, some numerical simulations are carried out to illustrate the main theoretical results.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Zizhen Zhang ◽  
Huizhong Yang

This paper is devoted to the study of an SIRS computer virus propagation model with two delays and multistate antivirus measures. We demonstrate that the system loses its stability and a Hopf bifurcation occurs when the delay passes through the corresponding critical value by choosing the possible combination of the two delays as the bifurcation parameter. Moreover, the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions are determined by means of the center manifold theorem and the normal form theory. Finally, some numerical simulations are performed to illustrate the obtained results.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Zizhen Zhang ◽  
Fangfang Yang ◽  
Wanjun Xia

This paper is concerned with the Hopf bifurcation of a synthetic drug transmission model with two delays. Firstly, some sufficient conditions of delay-induced bifurcation for such a model are captured by using different combinations of the two delays as the bifurcation parameter. Secondly, based on the center manifold theorem and normal form theory, some sufficient conditions determining properties of the Hopf bifurcation such as the direction and the stability are established. Finally, to underline the effectiveness of the obtained results, some numerical simulations are ultimately addressed.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Shaoli Wang ◽  
Zhihao Ge

The Hopf bifurcation for a predator-prey system with -logistic growth and prey refuge is studied. It is shown that the ODEs undergo a Hopf bifurcation at the positive equilibrium when the prey refuge rate or the index- passed through some critical values. Time delay could be considered as a bifurcation parameter for DDEs, and using the normal form theory and the center manifold reduction, explicit formulae are derived to determine the direction of bifurcations and the stability and other properties of bifurcating periodic solutions. Numerical simulations are carried out to illustrate the main results.


2014 ◽  
Vol 2014 ◽  
pp. 1-19
Author(s):  
Zizhen Zhang ◽  
Huizhong Yang

A predator-prey system with two delays and stage-structure for both the predator and the prey is considered. Sufficient conditions for the local stability and the existence of periodic solutions via Hopf bifurcation with respect to both delays are obtained by analyzing the distribution of the roots of the associated characteristic equation. Specially, the direction of the Hopf bifurcation and the stability of the periodic solutions bifurcating from the Hopf bifurcation are determined by applying the normal form theory and center manifold argument. Some numerical simulations for justifying the theoretical analysis are also provided.


2011 ◽  
Vol 2011 ◽  
pp. 1-25 ◽  
Author(s):  
N. Bairagi

A SI-type ecoepidemiological model that incorporates reproduction delay of predator is studied. Considering delay as parameter, we investigate the effect of delay on the stability of the coexisting equilibrium. It is observed that there is stability switches, and Hopf bifurcation occurs when the delay crosses some critical value. By applying the normal form theory and the center manifold theorem, the explicit formulae which determine the stability and direction of the bifurcating periodic solutions are determined. Computer simulations have been carried out to illustrate different analytical findings. Results indicate that the Hopf bifurcation is supercritical and the bifurcating periodic solution is stable for the considered parameter values. It is also observed that the quantitative level of abundance of system populations depends crucially on the delay parameter if the reproduction period of predator exceeds the critical value.


2014 ◽  
Vol 55 (3) ◽  
pp. 214-231 ◽  
Author(s):  
E. KARAOGLU ◽  
H. MERDAN

AbstractThe aim of this paper is to give a detailed analysis of Hopf bifurcation of a ratio-dependent predator–prey system involving two discrete delays. A delay parameter is chosen as the bifurcation parameter for the analysis. Stability of the bifurcating periodic solutions is determined by using the centre manifold theorem and the normal form theory introduced by Hassard et al. Some of the bifurcation properties including the direction, stability and period are given. Finally, our theoretical results are supported by some numerical simulations.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Long Li ◽  
Yanxia Zhang

In this paper, a Lengyel–Epstein model with two delays is proposed and considered. By choosing the different delay as a parameter, the stability and Hopf bifurcation of the system under different situations are investigated in detail by using the linear stability method. Furthermore, the sufficient conditions for the stability of the equilibrium and the Hopf conditions are obtained. In addition, the explicit formula determining the direction of Hopf bifurcation and the stability of bifurcating periodic solutions are obtained with the normal form theory and the center manifold theorem to delay differential equations. Some numerical examples and simulation results are also conducted at the end of this paper to validate the developed theories.


2021 ◽  
Vol 6 (11) ◽  
pp. 12225-12244
Author(s):  
Luoyi Wu ◽  
◽  
Hang Zheng ◽  

<abstract><p>In this paper, a delayed predator-prey system with additional food and asymmetric functional response is investigated. We discuss the local stability of equilibria and the existence of local Hopf bifurcation under the influence of the time delay. By using the normal form theory and center manifold theorem, the explicit formulas which determine the properties of bifurcating periodic solutions are obtained. Further, we prove that global periodic solutions exist after the second critical value of delay via Wu's theory. Finally, the correctness of the previous theoretical analysis is demonstrated by some numerical cases.</p></abstract>


Sign in / Sign up

Export Citation Format

Share Document