Stability and Bifurcation Analysis in a Maglev System with Multiple Delays

2015 ◽  
Vol 25 (05) ◽  
pp. 1550074 ◽  
Author(s):  
Lingling Zhang ◽  
Jianhua Huang ◽  
Lihong Huang ◽  
Zhizhou Zhang

This paper considers the time-delayed feedback control for Maglev system with two discrete time delays. We determine constraints on the feedback time delays which ensure the stability of the Maglev system. An algorithm is developed for drawing a two-parametric bifurcation diagram with respect to two delays τ1 and τ2. Direction and stability of periodic solutions are also determined using the normal form method and center manifold theory by Hassard. The complex dynamical behavior of the Maglev system near the domain of stability is confirmed by exhaustive numerical simulation.

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
G. Kai ◽  
W. Zhang ◽  
Z. Jin ◽  
C. Z. Wang

The complex chaotic dynamics and multistability of financial system are some important problems in micro- and macroeconomic fields. In this paper, we study the influence of two-delay feedback on the nonlinear dynamics behavior of financial system, considering the linear stability of equilibrium point under the condition of single delay and two delays. The system undergoes Hopf bifurcation near the equilibrium point. The stability and bifurcation directions of Hopf bifurcation are studied by using the normal form method and central manifold theory. The theoretical results are verified by numerical simulation. Furthermore, one feature of the proposed financial chaotic system is that its multistability depends extremely on the memristor initial condition and the system parameters. It is shown that the nonlinear dynamics of financial chaotic system can be significantly changed by changing the values of time delays.


2014 ◽  
Vol 2014 ◽  
pp. 1-14
Author(s):  
Zizhen Zhang ◽  
Huizhong Yang

An SEIQRS model for the transmission of malicious objects in computer network with two delays is investigated in this paper. We show that possible combination of the two delays can affect the stability of the model and make the model bifurcate periodic solutions under some certain conditions. For further investigation, properties of the periodic solutions are studied by using the normal form method and center manifold theory. Finally, some numerical simulations are given to justify the theoretical results.


2013 ◽  
Vol 5 (2) ◽  
pp. 146-162
Author(s):  
Jing-Jun Zhao ◽  
Jing-Yu Xiao ◽  
Yang Xu

AbstractThis paper is concerned with the Hopf bifurcation analysis of tumor-immune system competition model with two delays. First, we discuss the stability of state points with different kinds of delays. Then, a sufficient condition to the existence of the Hopf bifurcation is derived with parameters at different points. Furthermore, under this condition, the stability and direction of bifurcation are determined by applying the normal form method and the center manifold theory. Finally, a kind of Runge-Kutta methods is given out to simulate the periodic solutions numerically. At last, some numerical experiments are given to match well with the main conclusion of this paper.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Shumin Jiang ◽  
Fei Xu ◽  
Zhanwen Ding ◽  
Chen Yang ◽  
Huanhuan Liu

Two different time delay structures for the dynamical Cournot game with two heterogeneous players are considered in this paper, in which a player is assumed to make decision via his marginal profit with time delay and another is assumed to adjust strategy according to the delayed price. The dynamics of both players output adjustments are analyzed and simulated. The time delay for the marginal profit has more influence on the dynamical behaviors of the system while the market price delay has less effect, and an intermediate level of the delay weight for the marginal profit can expand the stability region and thus promote the system stability. It is also shown that the system may lose stability due to either a period-doubling bifurcation or a Neimark-Sacker bifurcation. Numerical simulations show that the chaotic behaviors can be stabilized by the time-delayed feedback control, and the two different delays play different roles on the system controllability: the delay of the marginal profit has more influence on the system control than the delay of the market price.


2021 ◽  
Vol 31 (14) ◽  
Author(s):  
Ruimin Zhang ◽  
Xiaohui Liu ◽  
Chunjin Wei

In this paper, we study a classic mutualistic relationship between the leaf cutter ants and their fungus garden, establishing a time delay mutualistic system with stage structure. We investigate the stability and Hopf bifurcation by analyzing the distribution of the roots of the associated characteristic equation. By means of the center manifold theory and normal form method, explicit formulae are derived to determine the stability, direction and other properties of bifurcating periodic solutions. Finally, some numerical simulations are carried out for illustrating the theoretical results.


2011 ◽  
Vol 130-134 ◽  
pp. 1544-1546
Author(s):  
Dan Na Sun ◽  
Zi Ku Wu

A three species system with time delays was considered. Firstly, we got the system’s three population equilibrium point and shifted it to zero point through transformation. Secondly, we analyzed the stability of the system at the equilibrium point. We support our analytical findings with numerical simulation.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Yingguo Li

We consider the nonlinear dynamical behavior of a three-dimensional recurrent neural network with time delay. By choosing the time delay as a bifurcation parameter, we prove that Hopf bifurcation occurs when the delay passes through a sequence of critical values. Applying the nor- mal form method and center manifold theory, we obtain some local bifurcation results and derive formulas for determining the bifurcation direction and the stability of the bifurcated periodic solution. Some numerical examples are also presented to verify the theoretical analysis.


2014 ◽  
Vol 472 ◽  
pp. 146-151
Author(s):  
Ya Li Lu

This paper studies the dynamics of a duopoly model with bounded rationality and nonlinear demand function. Based on the stability theorem and Jurys criterions, we prove that the model has two unstable boundary fixed points and a local stable Nash equilibrium. Then we depict the stability region of Nash equilibrium, and investigate the effects of output adjustment speed on the players profit respectively. Theoretical analysis and simulations show that higher output adjustment speed can result in chaotic variation of outputs, and that the Nash equilibrium is the optimal result of duopoly game. To improve the profitability of each player and achieve the optimal game result, we put forth a new scheme combined with the time-delayed feedback control and the limiter control to stabilize the output to Nash equilibrium. Finally, the numerical simulation is adopted to verify the effectiveness and feasibility of the above control scheme.


Sign in / Sign up

Export Citation Format

Share Document