Center Problems and Limit Cycle Bifurcations in a Class of Quasi-Homogeneous Systems

2015 ◽  
Vol 25 (10) ◽  
pp. 1550135 ◽  
Author(s):  
Yanqin Xiong ◽  
Maoan Han ◽  
Yong Wang

In this paper, we first classify all centers of a class of quasi-homogeneous polynomial differential systems of degree 5. Then we extend this kind of systems to a generalized polynomial differential system and provide the necessary and sufficient conditions to have a center at the origin. Furthermore, we study the Poincaré bifurcation for its perturbed system as it has a center at the origin, find the Poincaré cyclicity up to first order of ε.

2016 ◽  
Vol 2016 ◽  
pp. 1-5
Author(s):  
Zouhair Diab ◽  
Amar Makhlouf

We perturb the differential systemx˙1=-x2(1+x1),x˙2=x1(1+x1), andx˙k=0fork=3,…,dinside the class of all polynomial differential systems of degreeninRd, and we prove that at mostnd-1limit cycles can be obtained for the perturbed system using the first-order averaging theory.


Author(s):  
Jaume Llibre ◽  
Xiang Zhang

AbstractWe provide sufficient conditions for the non-existence, existence and uniqueness of limit cycles surrounding a focus of a quadratic polynomial differential system in the plane.


1934 ◽  
Vol 4 (1) ◽  
pp. 36-40
Author(s):  
I. S. ◽  
E. S. Sokolnikoff

In a recent paper J. M. Whittaker considered the problem of resolving a linear differential system into a product of two or more systems of lower order. This note is a contribution to this problem and furnishes the necessary and sufficient conditions for the resolution of the system into two equivalent systems of lower order of the type considered by Whittaker.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 722
Author(s):  
Shyam Sundar Santra ◽  
Khaled Mohamed Khedher ◽  
Osama Moaaz ◽  
Ali Muhib ◽  
Shao-Wen Yao

In this work, we aimed to obtain sufficient and necessary conditions for the oscillatory or asymptotic behavior of an impulsive differential system. It is easy to notice that most works that study the oscillation are concerned only with sufficient conditions and without impulses, so our results extend and complement previous results in the literature. Further, we provide two examples to illustrate the main results.


2015 ◽  
Vol 25 (10) ◽  
pp. 1550131 ◽  
Author(s):  
Fangfang Jiang ◽  
Junping Shi ◽  
Jitao Sun

In this paper, we investigate the number of limit cycles for a class of discontinuous planar differential systems with multiple sectors separated by many rays originating from the origin. In each sector, it is a smooth generalized Liénard polynomial differential system x′ = -y + g1(x) + f1(x)y and y′ = x + g2(x) + f2(x)y, where fi(x) and gi(x) for i = 1, 2 are polynomials of variable x with any given degree. By the averaging theory of first-order for discontinuous differential systems, we provide the criteria on the maximum number of medium amplitude limit cycles for the discontinuous generalized Liénard polynomial differential systems. The upper bound for the number of medium amplitude limit cycles can be attained by specific examples.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Amar Makhlouf ◽  
Lilia Bousbiat

We provide sufficient conditions for the existence of periodic solutions of the polynomial third order differential systemx.=-y+εP(x,y,z)+h1(t),  y.=x+εQ(x,y,z)+h2(t),  and  z.=az+εR(x,y,z)+h3(t), whereP,Q, andRare polynomials in the variablesx,y, andzof degreen,  hi(t)=hi(t+2π)withi=1,2,3being periodic functions,ais a real number, andεis a small parameter.


2020 ◽  
Vol 30 (08) ◽  
pp. 2050115
Author(s):  
Jing Gao ◽  
Yulin Zhao

In this paper, we study a class of [Formula: see text]-equivariant planar polynomial differential systems [Formula: see text]. It is shown that for any [Formula: see text] there is a differential system of the above type having at least [Formula: see text] limit cycles. This is proved by estimating the number of zeros of the first-order Melnikov function.


2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Fengqin Zhang ◽  
Jurang Yan

Resonance and nonresonance periodic value problems of first-order differential systems are studied. Several new existence and uniqueness of solutions for the above problems are obtained. To establish such results sufficient conditions of limit forms are given. A necessary and sufficient condition for existence of nontrivial solution is also proved.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Shyam Sundar Santra ◽  
Apurba Ghosh ◽  
Omar Bazighifan ◽  
Khaled Mohamed Khedher ◽  
Taher A. Nofal

AbstractIn this work, we present new necessary and sufficient conditions for the oscillation of a class of second-order neutral delay impulsive differential equations. Our oscillation results complement, simplify and improve recent results on oscillation theory of this type of nonlinear neutral impulsive differential equations that appear in the literature. An example is provided to illustrate the value of the main results.


1980 ◽  
Vol 3 (2) ◽  
pp. 235-268
Author(s):  
Ewa Orłowska

The central method employed today for theorem-proving is the resolution method introduced by J. A. Robinson in 1965 for the classical predicate calculus. Since then many improvements of the resolution method have been made. On the other hand, treatment of automated theorem-proving techniques for non-classical logics has been started, in connection with applications of these logics in computer science. In this paper a generalization of a notion of the resolution principle is introduced and discussed. A certain class of first order logics is considered and deductive systems of these logics with a resolution principle as an inference rule are investigated. The necessary and sufficient conditions for the so-called resolution completeness of such systems are given. A generalized Herbrand property for a logic is defined and its connections with the resolution-completeness are presented. A class of binary resolution systems is investigated and a kind of a normal form for derivations in such systems is given. On the ground of the methods developed the resolution system for the classical predicate calculus is described and the resolution systems for some non-classical logics are outlined. A method of program synthesis based on the resolution system for the classical predicate calculus is presented. A notion of a resolution-interpretability of a logic L in another logic L ′ is introduced. The method of resolution-interpretability consists in establishing a relation between formulas of the logic L and some sets of formulas of the logic L ′ with the intention of using the resolution system for L ′ to prove theorems of L. It is shown how the method of resolution-interpretability can be used to prove decidability of sets of unsatisfiable formulas of a given logic.


Sign in / Sign up

Export Citation Format

Share Document