Spatiotemporal Dynamics and Hopf Bifurcation in a Delayed Diffusive Intraguild Predation Model with Holling II Functional Response

2016 ◽  
Vol 26 (12) ◽  
pp. 1650197 ◽  
Author(s):  
Renji Han ◽  
Binxiang Dai

We propose a kind of delayed diffusive intraguild predation model with Holling II functional response in this paper. By analyzing the eigenvalue spectrum, it is found that the stability or instability of equilibria can be induced by delay. By utilizing the local bifurcation theory of partial functional differential equations, Hopf bifurcation of the proposed system with time delay as bifurcation parameter is investigated. It reveals that the time delay has a destabilizing effect in the intraguild predation model dynamics and a phenomenon of Hopf bifurcation occurs when the delay increases through a certain threshold. Then we give the explicit formulas to determine the direction, stability of Hopf bifurcation by utilizing the normal form method and center manifold reduction for PFDEs. Numerical simulations are performed to illustrate our theoretical results and show that delay and diffusion can induce the system into chaos and even trigger the emergence of different types of spatial patterns, including spiral wave pattern and chaotic wave pattern, which are induced by Hopf instability.

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Ruizhi Yang ◽  
Yuxin Ma ◽  
Chiyu Zhang

AbstractIn this paper, we consider a diffusive predator–prey model with a time delay and prey toxicity. The effect of time delay on the stability of the positive equilibrium is studied by analyzing the eigenvalue spectrum. Delay-induced Hopf bifurcation is also investigated. By utilizing the normal form method and center manifold reduction for partial functional differential equations, the formulas for determining the property of Hopf bifurcation are given.


2019 ◽  
Vol 29 (11) ◽  
pp. 1950144 ◽  
Author(s):  
Zuolin Shen ◽  
Junjie Wei

In this paper, we consider the dynamics of a delayed reaction–diffusion mussel-algae system subject to Neumann boundary conditions. When the delay is zero, we show the existence of positive solutions and the global stability of the boundary equilibrium. When the delay is not zero, we obtain the stability of the positive constant steady state and the existence of Hopf bifurcation by analyzing the distribution of characteristic values. By using the theory of normal form and center manifold reduction for partial functional differential equations, we derive an algorithm that determines the direction of Hopf bifurcation and the stability of bifurcating periodic solutions. Finally, some numerical simulations are carried out to support our theoretical results.


2020 ◽  
Vol 30 (09) ◽  
pp. 2050130 ◽  
Author(s):  
Shangzhi Li ◽  
Shangjiang Guo

In this paper, we extend the equivariant Hopf bifurcation theory for semilinear functional differential equations in general Banach spaces and then apply it to reaction–diffusion models with delay effect and homogeneous Dirichlet boundary condition on a general open domain with a smooth boundary. In the process we derive the criteria for the existence and directions of branches of bifurcating periodic solutions, avoiding the process of center manifold reduction.


2014 ◽  
Vol 19 (1) ◽  
pp. 132-153 ◽  
Author(s):  
Wenjie Zuo ◽  
Junjie Wei

A diffusive ratio-dependent predator-prey system with Holling-III functional response and delay effects is considered. Global stability of the boundary equilibrium and the stability of the unique positive steady state and the existence of spatially homogeneous and inhomogeneous periodic solutions are investigated in detail, by the maximum principle and the characteristic equations. Ratio-dependent functional response exhibits rich spatiotemporal patterns. It is found that, the system without delay is dissipative and uniformly permanent under certain conditions, the delay can destabilize the positive constant equilibrium and spatial Hopf bifurcations occur as the delay crosses through some critical values. Then, the direction and the stability of Hopf bifurcations are determined by applying the center manifold reduction and the normal form theory for partial functional differential equations. Some numerical simulations are carried out to illustrate the theoretical results.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-24
Author(s):  
Xin-You Meng ◽  
Li Xiao

In this paper, a diffusion two-phytoplankton one-zooplankton model with time delay, Beddington–DeAnglis functional response, and Holling II functional response is proposed. First, the existence and local stability of all equilibria of such model are studied. Then, the existence of Hopf bifurcation of the corresponding model without diffusion is given by taking time delay as the bifurcation parameter. Next, the direction of Hopf bifurcation and the stability of the bifurcating periodic solutions are investigated by using the normal form theory and center manifold theorem. Furthermore, due to the local bifurcation theory of partial functional differential equations, Hopf bifurcation of the model is investigated by considering time delay as the bifurcation parameter. The explicit formulas to determine the properties of Hopf bifurcation are given by the method of the normal form theory and center manifold theorem for partial functional differential equations. Finally, some numerical simulations are performed to check out our theoretical results.


2015 ◽  
Vol 08 (03) ◽  
pp. 1550041 ◽  
Author(s):  
Xue Zhang ◽  
Qingling Zhang

A differential-algebraic prey–predator model with time delay and Allee effect on the growth of the prey population is investigated. Using differential-algebraic system theory, we transform the prey–predator model into its normal form and study its dynamics in terms of local analysis and Hopf bifurcation. By analyzing the associated characteristic equation, it is observed that the model undergoes a Hopf bifurcation at some critical value of time delay. In particular, we study the direction of Hopf bifurcation and the stability of bifurcated periodic solutions, and an explicit algorithm is given by applying the normal form theory and the center manifold reduction for functional differential equations. Finally, numerical simulations supporting the theoretical analysis are also included.


2008 ◽  
Vol 18 (02) ◽  
pp. 441-453 ◽  
Author(s):  
XIANG-PING YAN ◽  
WAN-TONG LI

The main purpose of this paper is to investigate the stability and Hopf bifurcation for a delayed two-species cooperative diffusion system with Neumann boundary conditions. By linearizing the system at the positive equilibrium and analyzing the corresponding characteristic equation, the asymptotic stability of positive equilibrium and the existence of Hopf oscillations are demonstrated. It is shown that, under certain conditions, the system undergoes only a spatially homogeneous Hopf bifurcation at the positive equilibrium when the delay crosses through a sequence of critical values; under the other conditions, except for the previous spatially homogeneous Hopf bifurcations, the system also undergoes a spatially inhomogeneous Hopf bifurcation at the positive equilibrium when the delay crosses through another sequence of critical values. In particular, in order to determine the direction and stability of periodic solutions bifurcating from spatially homogeneous Hopf bifurcations, the explicit formulas are given by using the normal form theory and the center manifold reduction for partial functional differential equations (PFDEs). Finally, to verify our theoretical predictions, some numerical simulations are also included.


2012 ◽  
Vol 17 (4) ◽  
pp. 379-409 ◽  
Author(s):  
Xiaoyuan Chang ◽  
Junjie Wei

In this paper, we investigated the dynamics of a diffusive delayed predator-prey system with Holling type II functional response and nozero constant prey harvesting on no-flux boundary condition. At first, we obtain the existence and the stability of the equilibria by analyzing the distribution of the roots of associated characteristic equation. Using the time delay as the bifurcation parameter and the harvesting term as the control parameter, we get the existence and the stability of Hopf bifurcation at the positive constant steady state. Applying the normal form theory and the center manifold argument for partial functional differential equations, we derive an explicit formula for determining the direction and the stability of Hopf bifurcation. Finally, an optimal control problem has been considered.


2014 ◽  
Vol 07 (01) ◽  
pp. 1450007
Author(s):  
LIN-LIN WANG ◽  
BEI-BEI ZHOU ◽  
YONG-HONG FAN

A delayed predator–prey diffusion system with homogeneous Neumann boundary condition is considered. In order to study the impact of the time delay on the stability of the model, the delay τ is taken as the bifurcation parameter, the results show that when the time delay across some critical values, the Hopf bifurcations may occur. In particular, by using the normal form theory and the center manifold reduction for partial functional differential equations, the direction of the Hopf bifurcation and the stability of the bifurcated periodic solution have been established. The effect of the diffusion on the bifurcated periodic solution is also considered. A numerical example is given to support the main result.


2011 ◽  
Vol 2011 ◽  
pp. 1-22 ◽  
Author(s):  
Yuzhen Bai ◽  
Xiaopeng Zhang

This paper is concerned with a diffusive predator-prey system with Beddington-DeAngelis functional response and delay effect. By analyzing the distribution of the eigenvalues, the stability of the positive equilibrium and the existence of spatially homogeneous and spatially inhomogeneous periodic solutions are investigated. Also, it is shown that the small diffusion can affect the Hopf bifurcations. Finally, the direction and stability of Hopf bifurcations are determined by normal form theory and center manifold reduction for partial functional differential equations.


Sign in / Sign up

Export Citation Format

Share Document