scholarly journals Stability and Hopf Bifurcation in a Diffusive Predator-Prey System with Beddington-DeAngelis Functional Response and Time Delay

2011 ◽  
Vol 2011 ◽  
pp. 1-22 ◽  
Author(s):  
Yuzhen Bai ◽  
Xiaopeng Zhang

This paper is concerned with a diffusive predator-prey system with Beddington-DeAngelis functional response and delay effect. By analyzing the distribution of the eigenvalues, the stability of the positive equilibrium and the existence of spatially homogeneous and spatially inhomogeneous periodic solutions are investigated. Also, it is shown that the small diffusion can affect the Hopf bifurcations. Finally, the direction and stability of Hopf bifurcations are determined by normal form theory and center manifold reduction for partial functional differential equations.

2009 ◽  
Vol 19 (07) ◽  
pp. 2283-2294 ◽  
Author(s):  
CUN-HUA ZHANG ◽  
XIANG-PING YAN

This paper is concerned with a delayed Lotka–Volterra two-species predator–prey system with a distributed delay. By linearizing the system at the positive equilibrium and analyzing the associated characteristic equation, the asymptotic stability of positive equilibrium is investigated and Hopf bifurcations are demonstrated. It is found that the positive equilibrium of the system is always locally asymptotically stable when the delay kernel is the weak kernel while there is a stability switch of positive equilibrium when the delay kernel is the strong kernel and the system can undergo a Hopf bifurcation at the positive equilibrium when the average time delay in the delay kernel crosses certain critical values. In particular, by applying the normal form theory and center manifold reduction to functional differential equations (FDEs), the explicit formula determining the direction of Hopf bifurcations and the stability of bifurcated periodic solutions is given. Finally, some numerical simulations are also included to support the analytical results obtained.


2014 ◽  
Vol 19 (1) ◽  
pp. 132-153 ◽  
Author(s):  
Wenjie Zuo ◽  
Junjie Wei

A diffusive ratio-dependent predator-prey system with Holling-III functional response and delay effects is considered. Global stability of the boundary equilibrium and the stability of the unique positive steady state and the existence of spatially homogeneous and inhomogeneous periodic solutions are investigated in detail, by the maximum principle and the characteristic equations. Ratio-dependent functional response exhibits rich spatiotemporal patterns. It is found that, the system without delay is dissipative and uniformly permanent under certain conditions, the delay can destabilize the positive constant equilibrium and spatial Hopf bifurcations occur as the delay crosses through some critical values. Then, the direction and the stability of Hopf bifurcations are determined by applying the center manifold reduction and the normal form theory for partial functional differential equations. Some numerical simulations are carried out to illustrate the theoretical results.


Author(s):  
Wei Liu ◽  
Yaolin Jiang

AbstractThis article is concerned with a Leslie–Gower predator–prey system with the predator being harvested and the prey having a delay due to the gestation of prey species. By regarding the gestation delay as a bifurcation parameter, we first derive some sufficient conditions on the stability of positive equilibrium point and the existence of Hopf bifurcations basing on the local parametrization method for differential-algebra system. In succession, we also investigate the direction of Hopf bifurcations and the stability of bifurcating periodic solutions on the center manifold by employing the center manifold reduction for functional differential equations. Finally, to verify our theoretical predictions, several numerical simulations are given.


2008 ◽  
Vol 18 (02) ◽  
pp. 441-453 ◽  
Author(s):  
XIANG-PING YAN ◽  
WAN-TONG LI

The main purpose of this paper is to investigate the stability and Hopf bifurcation for a delayed two-species cooperative diffusion system with Neumann boundary conditions. By linearizing the system at the positive equilibrium and analyzing the corresponding characteristic equation, the asymptotic stability of positive equilibrium and the existence of Hopf oscillations are demonstrated. It is shown that, under certain conditions, the system undergoes only a spatially homogeneous Hopf bifurcation at the positive equilibrium when the delay crosses through a sequence of critical values; under the other conditions, except for the previous spatially homogeneous Hopf bifurcations, the system also undergoes a spatially inhomogeneous Hopf bifurcation at the positive equilibrium when the delay crosses through another sequence of critical values. In particular, in order to determine the direction and stability of periodic solutions bifurcating from spatially homogeneous Hopf bifurcations, the explicit formulas are given by using the normal form theory and the center manifold reduction for partial functional differential equations (PFDEs). Finally, to verify our theoretical predictions, some numerical simulations are also included.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Shaoli Wang ◽  
Zhihao Ge

The Hopf bifurcation for a predator-prey system with -logistic growth and prey refuge is studied. It is shown that the ODEs undergo a Hopf bifurcation at the positive equilibrium when the prey refuge rate or the index- passed through some critical values. Time delay could be considered as a bifurcation parameter for DDEs, and using the normal form theory and the center manifold reduction, explicit formulae are derived to determine the direction of bifurcations and the stability and other properties of bifurcating periodic solutions. Numerical simulations are carried out to illustrate the main results.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Yanfeng Li ◽  
Haicheng Liu ◽  
Ruizhi Yang

AbstractBased on the predator–prey system with a Holling type functional response function, a diffusive predator–prey system with digest delay and habitat complexity is proposed. Firstly, the stability of the equilibrium of diffusion system without delay is studied. Secondly, under the Neumann boundary conditions, taking time delay as the bifurcation parameter, by analyzing the eigenvalues of linearized operator of the system and using the normal form theory and center manifold method of partial functional differential equations, the effect of time delay on the stability of the system is studied and the conditions under which Hopf bifurcation occurs are given. In addition, the calculation formulas of the bifurcation direction and the stability of bifurcating periodic solutions are derived. Finally, the accuracy of theoretical analysis results is verified by numerical simulations and the biological explanation is given for the analysis results.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Ruizhi Yang ◽  
Yuxin Ma ◽  
Chiyu Zhang

AbstractIn this paper, we consider a diffusive predator–prey model with a time delay and prey toxicity. The effect of time delay on the stability of the positive equilibrium is studied by analyzing the eigenvalue spectrum. Delay-induced Hopf bifurcation is also investigated. By utilizing the normal form method and center manifold reduction for partial functional differential equations, the formulas for determining the property of Hopf bifurcation are given.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Xia Liu ◽  
Yanwei Liu ◽  
Jinling Wang

A delayed predator prey system with refuge and constant rate harvesting is discussed by applying the normal form theory of retarded functional differential equations introduced by Faria and Magalhães. The analysis results show that under some conditions the system has a Bogdanov-Takens singularity. A versal unfolding of the system at this singularity is obtained. Our main results illustrate that the delay has an important effect on the dynamical behaviors of the system.


2012 ◽  
Vol 2012 ◽  
pp. 1-23 ◽  
Author(s):  
Yanuo Zhu ◽  
Yongli Cai ◽  
Shuling Yan ◽  
Weiming Wang

This work deals with the analysis of a delayed diffusive predator-prey system under Neumann boundary conditions. The dynamics are investigated in terms of the stability of the nonnegative equilibria and the existence of Hopf bifurcation by analyzing the characteristic equations. The direction of Hopf bifurcation and the stability of bifurcating periodic solution are also discussed by employing the normal form theory and the center manifold reduction. Furthermore, we prove that the positive equilibrium is asymptotically stable when the delay is less than a certain critical value and unstable when the delay is greater than the critical value.


2013 ◽  
Vol 2013 ◽  
pp. 1-19 ◽  
Author(s):  
Jiao Jiang ◽  
Yongli Song

A delayed Leslie-Gower predator-prey model with nonmonotonic functional response is studied. The existence and local stability of the positive equilibrium of the system with or without delay are completely determined in the parameter plane. Using the method of upper and lower solutions and monotone iterative scheme, a sufficient condition independent of delay for the global stability of the positive equilibrium is obtained. Hopf bifurcations induced by the ratio of the intrinsic growth rates of the predator and prey and by delay, respectively, are found. Employing the normal form theory, the direction and stability of Hopf bifurcations can be explicitly determined by the parameters of the system. Some numerical simulations are given to support and extend our theoretical results. Two limit cycles enclosing an equilibrium, one limit cycle enclosing three equilibria and different types of heteroclinic orbits such as connecting two equilibria and connecting a limit cycle and an equilibrium are also found by using analytic and numerical methods.


Sign in / Sign up

Export Citation Format

Share Document