Turing Instability and Pattern Formation in a Strongly Coupled Diffusive Predator–Prey System

2020 ◽  
Vol 30 (08) ◽  
pp. 2030020 ◽  
Author(s):  
Guangping Hu ◽  
Zhaosheng Feng

We are concerned with the Turing instability and pattern caused by cross-diffusion in a strongly coupled spatial predator–prey system. We explore how cross-diffusion destabilizes the spatially uniform steady state which is stable in reaction–diffusion systems, and explicitly describe the Turing space under certain conditions. Particularly, when the parameter values are taken in the Turing–Hopf domain, in which the spatiotemporal dynamical behavior is influenced by both Hopf and Turing instabilities, we investigate the formation of all possible patterns, including non-Turing structures such as wave pattern, competing dynamics as well as stationary Turing pattern. Furthermore, numerical simulations are illustrated to verify our theoretical findings.

2012 ◽  
Vol 05 (06) ◽  
pp. 1250060 ◽  
Author(s):  
GUANG-PING HU ◽  
XIAO-LING LI

In this paper, a strongly coupled diffusive predator–prey system with a modified Leslie–Gower term is considered. We will show that under certain hypotheses, even though the unique positive equilibrium is asymptotically stable for the dynamics with diffusion, Turing instability can produce due to the presence of the cross-diffusion. In particular, we establish the existence of non-constant positive steady states of this system. The results indicate that cross-diffusion can create stationary patterns.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Jianglin Zhao ◽  
Min Zhao ◽  
Hengguo Yu

A diffusive predator-prey system with prey refuge is studied analytically and numerically. The Turing bifurcation is analyzed in detail, which in turn provides a theoretical basis for the numerical simulation. The influence of prey refuge and group defense on the equilibrium density and patterns of species under the condition of Turing instability is explored by numerical simulations, and this shows that the prey refuge and group defense have an important effect on the equilibrium density and patterns of species. Moreover, it can be obtained that the distributions of species are more sensitive to group defense than prey refuge. These results are expected to be of significance in exploration for the spatiotemporal dynamics of ecosystems.


2018 ◽  
Vol 28 (07) ◽  
pp. 1850089 ◽  
Author(s):  
Walid Abid ◽  
R. Yafia ◽  
M. A. Aziz-Alaoui ◽  
Ahmed Aghriche

This paper is concerned with some mathematical analysis and numerical aspects of a reaction–diffusion system with cross-diffusion. This system models a modified version of Leslie–Gower functional response as well as that of the Holling-type II. Our aim is to investigate theoretically and numerically the asymptotic behavior of the interior equilibrium of the model. The conditions of boundedness, existence of a positively invariant set are proved. Criteria for local stability/instability and global stability are obtained. By using the bifurcation theory, the conditions of Hopf and Turing bifurcation critical lines in a spatial domain are proved. Finally, we carry out some numerical simulations in order to support our theoretical results and to interpret how biological processes affect spatiotemporal pattern formation which show that it is useful to use the predator–prey model to detect the spatial dynamics in the real life.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Hongwei Yin ◽  
Xiaoyong Xiao ◽  
Xiaoqing Wen

For a predator-prey system, cross-diffusion has been confirmed to emerge Turing patterns. However, in the real world, the tendency for prey and predators moving along the direction of lower density of their own species, called self-diffusion, should be considered. For this, we investigate Turing instability for a predator-prey system with nonlinear diffusion terms including the normal diffusion, cross-diffusion, and self-diffusion. A sufficient condition of Turing instability for this system is obtained by analyzing the linear stability of spatial homogeneous equilibrium state of this model. A series of numerical simulations reveal Turing parameter regions of the interaction of diffusion parameters. According to these regions, we further demonstrate dispersion relations and spatial patterns. Our results indicate that self-diffusion plays an important role in the spatial patterns.


2012 ◽  
Vol 05 (04) ◽  
pp. 1250016 ◽  
Author(s):  
JIA LIU ◽  
HUA ZHOU ◽  
LAI ZHANG

In this paper, we consider a sex-structured predator–prey model with strongly coupled nonlinear reaction diffusion. Using the Lyapunov functional and Leray–Schauder degree theory, the existence and stability of both homogenous and heterogenous steady-states are investigated. Our results demonstrate that the unique homogenous steady-state is locally asymptotically stable for the associated ODE system and PDE system with self-diffusion. With the presence of the cross-diffusion, the homogeneous equilibrium is destabilized, and a heterogenous steady-state emerges as a consequence. In addition, the conditions guaranteeing the emergence of Turing patterns are derived.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Feng Rao

This paper proposes and analyzes a mathematical model for a predator-prey interaction with the Allee effect on prey species and with self- and cross-diffusion. The effect of diffusion which can drive the model with zero-flux boundary conditions to Turing instability is investigated. We present numerical evidence of time evolution of patterns controlled by self- and cross-diffusion in the model and find that the model dynamics exhibits a cross-diffusion controlled formation growth to spotted and striped-like coexisting and spotted pattern replication. Moreover, we discuss the effect of cross-diffusivity on the stability of the nontrivial equilibrium of the model, which depends upon the magnitudes of the self- and cross-diffusion coefficients. The obtained results show that cross-diffusion plays an important role in the pattern formation of the predator-prey model. It is also useful to apply the reaction-diffusion model to reveal the spatial predation in the real world.


Sign in / Sign up

Export Citation Format

Share Document