Dynamic Pricing Game Under Different Channel Power Structures in a Closed-Loop Supply Chain

2020 ◽  
Vol 30 (04) ◽  
pp. 2050052
Author(s):  
Junhai Ma ◽  
Fang Zhang ◽  
Hui Jiang

The importance of closed-loop supply chains has been widely recognized both in academic communities and in industrial sectors. This paper starts from the traditional supply chains and the new self-supply chain of GREE to extract realistic problems, to mainly investigating two noncooperative dynamic pricing policies in a dual-channel closed-loop supply chain consisting of a manufacturer and a retailer. Then, it studies the influence of different channel power structures on dynamic decisions and their complexities. Furthermore, the reference price affects the purchase decisions of consumers. Therefore, the model takes into account the influence of reference price of the market demands. Results show that the manufacturer who opens up a direct channel can make a huge profit in the game. In the dynamic game evolution process, the game leader is in a more advantageous position when the system is in a stable region; once entering into the bifurcating region or chaotic region, the game follower needs to adjust his price to follow the leader’s decision in order to make a profit. In addition, the system’s stable region becomes smaller when the market demand becomes more sensitive to the difference between the reference price and the actual price. In this model, if the manufacturer acts as a leader, he is in a more advantageous position when the market is sensitive to channel competition in the stable stage while the result is opposite in the unstable stage.

2019 ◽  
Vol 11 (22) ◽  
pp. 6413 ◽  
Author(s):  
Gong ◽  
Chen ◽  
Zhuang

The recycling and remanufacturing of e-waste is linked to a worldwide emphasis on the establishment and implementation of Extended Producer Responsibility system (ERP), which has become an important problem in the process of cycling economy. Meanwhile, with the development and expansion of large-scale retail enterprises, the power structure of supply chain channels is showing a tendency towards diversity as well. However, few studies on closed-loop supply chains (CLSC) have considered both recycling modes and channel power structures. We aim to explore the influence of different recycling modes and channel power structures on the optimal decisions and performance of a closed-loop supply chain (CLSC), considering three recycling channels including manufacturer recycling, retailer recycling and hybrid recycling of retailer and manufacturer and two dominant modes including manufacturer-led and retailer-led. We construct six closed-loop supply chain models under different combinations of three recycling channels and two dominant modes. We analyze the effect of different recycling channels on company decision-making under the same dominant mode, whether participating in recycling has an impact on company decision-making under different dominant modes, and the effect on supply chain members and supply chain system under different dominant modes and recycling channels. The results show that the hybrid recycling strategy is always optimal for both supply chain members; the sub-optimal recycling strategies are both recycled by the subordinate enterprise, and the worst recycling strategies are both recycled by the leading enterprise. Moreover, it is always the worst strategy for manufacturer to participate in a closed-loop supply chain dominated by retailer and recycled by retailer; participating in a closed-loop supply chain dominated by manufacturer and recycled by manufacturer is always the worst strategy for retailer. From a system point of view, system efficiency is the highest under hybrid recycling, and system efficiency is the lowest if leading company recycles separately.


Author(s):  
Dooho Lee

As awareness of environmental protection increases worldwide, enterprises have been building their supply chains in ways that conserve natural resources and minimize the creation of pollutants. One of the practical ways to make supply chains more sustainable is for enterprises to utilize green innovation strategies and to increase resource reuse. In this work, we focus on a closed-loop supply chain (CLSC) consisting of a manufacturer, a retailer, and a collector. In the investigated CLSC, the manufacturer and the retailer drive the green innovation strategy either individually or simultaneously to boost market demand. In the reverse flow of the CLSC, the collector is responsible for collecting consumers’ used products and transferring them to the manufacturer for remanufacturing. By combining two types of the market leadership and three types of green innovation strategies, we establish six different Stackelberg game models and solve them analytically. Through an extensive comparative analysis, we show who should have market leadership and who should drive the green innovation strategy in the CLSC. Various numerical examples are also given to support our major findings. One of our key findings suggests that the supply chain members must participate in green innovation activities at the same time to achieve a win-win scenario in the CLSC.


2020 ◽  
Vol 257 ◽  
pp. 120281 ◽  
Author(s):  
Wenjie Liu ◽  
Dingzhi Qin ◽  
Ningning Shen ◽  
Jing Zhang ◽  
Mingzhou Jin ◽  
...  

2019 ◽  
Vol 11 (15) ◽  
pp. 4237 ◽  
Author(s):  
Xiaodong Zhu ◽  
Lingfei Yu ◽  
Wei Li

The closed-loop supply chain management model is an effective way to promote sustainable economic development and environmental protection. Increasing the sales volume of remanufactured products to stimulate green growth is a key issue in the development of closed-loop supply chains. By designing an effective warranty strategy, customer’s perceived value can be enhanced and market demand can be stimulated. This study cuts through the warranty period of closed-loop supply chain products. Based on the perspective of consumer behavior, game theory is used to construct the optimal decision-making model for closed-loop supply chains. The optimal warranty decision making for new products and remanufactured products under centralized and decentralized decision-making models is discussed. Further, the impact of the closed-loop supply chain system with warranty services and the design of contract coordination is also shown. We show that consumer preference has a positive impact on the sales of remanufactured products and the profits of enterprises; with the extension of the new product and remanufacturing warranty period, the profit of the supply chain system first increases and then decreases, and the value is maximized at the extreme point in the manufacturer-led decision-making model. Furthermore, the leader gains higher profits with bargaining power, but the profit of the supply chain system under decentralized decision model is less than that of the centralized decision model, reflecting the double marginalization effect. The revenue sharing contract and the two-charge contract designed in this study coordinate the closed-loop supply chain system with warranty services, so that the member companies in the supply chain can achieve Pareto improvement.


2018 ◽  
Vol 118 (2) ◽  
pp. 480-498 ◽  
Author(s):  
Yacan Wang ◽  
Benjamin T. Hazen ◽  
Diane A. Mollenkopf

Purpose The success of closed loop supply chains is contingent upon consumer acceptance of remanufactured products, yet little is known about how consumers value such products. The purpose of this paper is to provide theoretical grounding for understanding consumers’ value perceptions as related to remanufactured products. Design/methodology/approach Diffusion of innovation theory and customer perceived value literature help form the theoretical model, which is tested empirically using survey data of consumers. Structural equation modeling was employed to test the hypotheses. Findings Perceived value of remanufactured products is measured as a function of perceived benefits (environmental benefits; price advantage) and perceived sacrifices (perceived quality; perceived risk), all of which are shown to impact perceived value. Additionally, perceived risk is found to partially mediate the relationship between perceived quality and perceived value. Originality/value This research makes two significant contributions. First, mid-range theory that is contextualized to the closed loop supply chain is developed to aid researchers and practitioners in better understanding the consumer’s role in the closed loop supply chain, as related to the acceptance of remanufactured products. Second, consumer acceptance of remanufactured products represents a form of supply chain demand risk that has previously been unrecognized. The results provide a foundation for incorporating this type of demand risk in to future research efforts.


2021 ◽  
Author(s):  
Yuhao Zhang ◽  
Tao Zhang

Abstract In this paper, we study a dual-channel closed-loop supply chain(CLSC), where the manufacturer wholesales the new product through the traditional retail channel and distributes the remanufactured product via a direct channel established by himself. We focus on developing two dynamic Stackelberg game models under the assumption of the retailer is an adaptive agent and the manufacturer is a bounded rational player with non-delay and delay decisions. The existence and locally asymptotic stability of Nash equilibrium is investigated, and also the complex dynamics of each model is illustrated including period-doubling bifurcation, Neimark-Sacker bifurcation, strange attractor and chaotic phenomena. Numerical simulations are conducted to examine the impacts of key parameters on the complex behaviors of the long-run dynamic Stackelberg game and the performance of chain members under various scenarios. The results reveal that the excessively high value of the price adjustment speed of the manufacturer, the consumer discount perception for the remanufactured product as well as the consumer preference degree to the direct channel have adestabilization effect on the Nash equilibrium. Besides, the delay decision adopted by manufacturer no matter in the traditional or direct channel does not always necessarily make the system more stable, but the appropriately delay weights can expand the stability domain of the system. Moreover, the manufacturer would suffer a significant profit loss while the retailer can capture more profits when the dual-channel CLSC system falls into periodic cycles and chaos motions. At last, the variable feedback control method is utilized to eliminate the delayed system chaos.


Sign in / Sign up

Export Citation Format

Share Document