scholarly journals Dynamic Pricing Game in a Dual-channel Closed-loop Supply Chain with Heterogeneous Players and Delay Decision

Author(s):  
Yuhao Zhang ◽  
Tao Zhang

Abstract In this paper, we study a dual-channel closed-loop supply chain(CLSC), where the manufacturer wholesales the new product through the traditional retail channel and distributes the remanufactured product via a direct channel established by himself. We focus on developing two dynamic Stackelberg game models under the assumption of the retailer is an adaptive agent and the manufacturer is a bounded rational player with non-delay and delay decisions. The existence and locally asymptotic stability of Nash equilibrium is investigated, and also the complex dynamics of each model is illustrated including period-doubling bifurcation, Neimark-Sacker bifurcation, strange attractor and chaotic phenomena. Numerical simulations are conducted to examine the impacts of key parameters on the complex behaviors of the long-run dynamic Stackelberg game and the performance of chain members under various scenarios. The results reveal that the excessively high value of the price adjustment speed of the manufacturer, the consumer discount perception for the remanufactured product as well as the consumer preference degree to the direct channel have adestabilization effect on the Nash equilibrium. Besides, the delay decision adopted by manufacturer no matter in the traditional or direct channel does not always necessarily make the system more stable, but the appropriately delay weights can expand the stability domain of the system. Moreover, the manufacturer would suffer a significant profit loss while the retailer can capture more profits when the dual-channel CLSC system falls into periodic cycles and chaos motions. At last, the variable feedback control method is utilized to eliminate the delayed system chaos.

2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Jie Gao ◽  
Xiong Wang ◽  
Qiuling Yang ◽  
Qin Zhong

The dual-channel closed-loop supply chain (CLSC) which is composed of one manufacturer and one retailer under uncertain demand of an indirect channel is constructed. In this paper, we establish three pricing models under decentralized decision making, namely, the Nash game between the manufacturer and the retailer, the manufacturer-Stackelberg game, and the retailer-Stackelberg game, to investigate pricing decisions of the CLSC in which the manufacturer uses the direct channel and indirect channel to sell products and entrusts the retailer to collect the used products. We numerically analyze the impact of customer acceptance of the direct channel (θ) on pricing decisions and excepted profits of the CLSC. The results show that when the variableθchanges in a certain range, the wholesale price, retail price, and expected profits of the retailer all decrease whenθincreases, while the direct online sales price and manufacturer’s expected profits in the retailer-Stackelberg game all increase whenθincreases. However, the optimal recycling transfer price and optimal acquisition price of used product are unaffected byθ.


Author(s):  
Yanting Huang ◽  
Benrong Zheng ◽  
Zongjun Wang

This paper considers a dual-channel closed-loop supply chain consisting of a manufacturer, a retailer and a collector in which the retailer possesses private demand information and determines whether to share his private information with other chain members. Specifically, we develop four information sharing models, namely no information sharing (Model C-R), the retailer sharing information with the manufacturer (Model C-R-M), the retailer revealing information to the collector (Model C-R-C), and the retailer disclosing information to both the manufacturer and the collector (Model C-R-T). We adopt the Stackelberg game to acquire the equilibrium strategies and examine the value of information sharing on chain members’ decisions. We find that, chain members will set the largest wholesale price, retail prices of direct and indirect channels when the retailer only shares information with the manufacturer and the highest return rate can be obtained in the case of the retailer only revealing information to the collector. We can also find that, information sharing is profitable to the manufacturer and the collector, while is detrimental to the retailer. The manufacturer, the collector and the retailer can reach the largest profits in Model C-R-T, Model C-R-C and Model C-R-M, respectively.


2020 ◽  
Vol 12 (20) ◽  
pp. 8602
Author(s):  
Haitao Chen ◽  
Zhaohui Dong ◽  
Gendao Li

This study establishs a dual channel closed-loop supply chain (CLSC) model under a government–penalty mechanism (RPM) consisting a dual-channel manufacturer, a retailer, and the government. We consider a Stackelberg game between the manufacturer and the retailer, and the government rewards or punishes manufacturers on the basis of the collection rate of used products. This paper analyzes the influence of government RPM on the optimal decisions, the relationship between the two sales channels, and the total social welfare of the supply chain system. We find that the government RPM can improve the stability of the dual-channel supply chain and the collection rate of the used products. Moreover, we are the first to provide a method of deriving the optimal government RPM through a numerical example.


2021 ◽  
Vol 13 (11) ◽  
pp. 6425
Author(s):  
Quanxi Li ◽  
Haowei Zhang ◽  
Kailing Liu

In closed-loop supply chains (CLSC), manufacturers, retailers, and recyclers perform their duties. Due to the asymmetry of information among enterprises, it is difficult for them to maximize efficiency and profits. To maximize the efficiency and profit of the CLSC, this study establishes five cooperation models of CLSC under the government‘s reward–penalty mechanism. We make decisions on wholesale prices, retail prices, transfer payment prices, and recovery rates relying on the Stackelberg game method and compare the optimal decisions. This paper analyzes the impact of the government reward-penalty mechanism on optimal decisions and how members in CLSC choose partners. We find that the government’s reward-penalty mechanism can effectively increase the recycling rate of used products and the total profit of the closed-loop supply chain. According to the calculation results of the models, under the government’s reward-penalty mechanism, the cooperation can improve the CLSC’s used products recycling capacity and profitability. In a supply chain, the more members participate in the cooperation, the higher profit the CLSC obtain. However, the cooperation mode of all members may lead to monopoly, which is not approved by government and customers.


Author(s):  
Dooho Lee

As awareness of environmental protection increases worldwide, enterprises have been building their supply chains in ways that conserve natural resources and minimize the creation of pollutants. One of the practical ways to make supply chains more sustainable is for enterprises to utilize green innovation strategies and to increase resource reuse. In this work, we focus on a closed-loop supply chain (CLSC) consisting of a manufacturer, a retailer, and a collector. In the investigated CLSC, the manufacturer and the retailer drive the green innovation strategy either individually or simultaneously to boost market demand. In the reverse flow of the CLSC, the collector is responsible for collecting consumers’ used products and transferring them to the manufacturer for remanufacturing. By combining two types of the market leadership and three types of green innovation strategies, we establish six different Stackelberg game models and solve them analytically. Through an extensive comparative analysis, we show who should have market leadership and who should drive the green innovation strategy in the CLSC. Various numerical examples are also given to support our major findings. One of our key findings suggests that the supply chain members must participate in green innovation activities at the same time to achieve a win-win scenario in the CLSC.


Sign in / Sign up

Export Citation Format

Share Document