Nonlinear Phenomena in Axially Moving Beams with Speed-Dependent Tension and Tension-Dependent Speed

2021 ◽  
Vol 31 (03) ◽  
pp. 2150037
Author(s):  
Ling Chen ◽  
You-Qi Tang ◽  
Shuang Liu ◽  
Yuan Zhou ◽  
Xing-Guang Liu

This paper investigates some nonlinear dynamical behaviors about domains of attraction, bifurcations, and chaos in an axially accelerating viscoelastic beam under a time-dependent tension and a time-dependent speed. The axial speed and the axial tension are coupled to each other on the basis of a harmonic variation over constant initial values. The transverse motion of the moving beam is governed by nonlinear integro-partial-differential equations with the rheological model of the Kelvin–Voigt energy dissipation mechanism, in which the material derivative is applied to the viscoelastic constitutive relation. The fourth-order Galerkin truncation is employed to transform the governing equation to a set of nonlinear ordinary differential equations. The nonlinear phenomena of the system are numerically determined by applying the fourth-order Runge–Kutta algorithm. The tristable and bistable domains of attraction on the stable steady state solution with a three-to-one internal resonance are analyzed emphatically by means of the fourth-order Galerkin truncation and the differential quadrature method, respectively. The system parameters on the bifurcation diagrams and the maximum Lyapunov exponent diagram are demonstrated by some numerical results of the displacement and speed of the moving beam. Furthermore, chaotic motion is identified in the forms of time histories, phase-plane portraits, fast Fourier transforms, and Poincaré sections.

2013 ◽  
Vol 05 (02) ◽  
pp. 1350019 ◽  
Author(s):  
HU DING ◽  
JEAN W. ZU

This study focuses on the steady-state periodic response and the chaotic behavior in the transverse motion of an axially moving viscoelastic tensioned beam with two-frequency excitations. The two-frequency excitations come from the external harmonic excitation and the parametric excitation from harmonic fluctuations of the moving speed. A dynamic model is established to include the finite axial support rigidity, the material derivative in the viscoelastic constitution relation, and the longitudinally varying tension due to the axial acceleration. The derived nonlinear integro-partial-differential equation of motion possesses space-dependent coefficients. Applying the differential quadrature method (DQM) and the integral quadrature method (IQM) to the equation of the transverse motion, a set of nonlinear ordinary differential equations is obtained. Based on the Runge–Kutta time discretization, the time history of the axially moving beam is numerically solved for the case of the primary resonance, the super–harmonic resonance, and the principal parametric resonance. For the first time, the nonlinear dynamics is studied under various relations between the forcing frequency and the parametric frequency, such as equal, multiple, and incommensurable relationships. The stable periodic response and its sensitivity to initial conditions are determined using the bidirectional frequency sweep. Furthermore, chaotic motions are identified using different methods including the Poincaré map, the maximum Lyapunov exponent, the fast Fourier transforms, and the initial value sensitivity. Numerical simulations reveal the characteristics of the periodic, quasiperiodic, and chaotic motion of a nonlinear axially moving beam under two-frequency excitations.


Author(s):  
V. F. Edneral ◽  
O. D. Timofeevskaya

Introduction:The method of resonant normal form is based on reducing a system of nonlinear ordinary differential equations to a simpler form, easier to explore. Moreover, for a number of autonomous nonlinear problems, it is possible to obtain explicit formulas which approximate numerical calculations of families of their periodic solutions. Replacing numerical calculations with their precalculated formulas leads to significant savings in computational time. Similar calculations were made earlier, but their accuracy was insufficient, and their complexity was very high.Purpose:Application of the resonant normal form method and a software package developed for these purposes to fourth-order systems in order to increase the calculation speed.Results:It has been shown that with the help of a single algorithm it is possible to study equations of high orders (4th and higher). Comparing the tabulation of the obtained formulas with the numerical solutions of the corresponding equations shows good quantitative agreement. Moreover, the speed of calculation by prepared approximating formulas is orders of magnitude greater than the numerical calculation speed. The obtained approximations can also be successfully applied to unstable solutions. For example, in the Henon — Heyles system, periodic solutions are surrounded by chaotic solutions and, when numerically integrated, the algorithms are often unstable on them.Practical relevance:The developed approach can be used in the simulation of physical and biological systems.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
O. Moaaz ◽  
A. Muhib ◽  
D. Baleanu ◽  
W. Alharbi ◽  
E. E. Mahmoud

AbstractAn interesting point in studying the oscillatory behavior of solutions of delay differential equations is the abbreviation of the conditions that ensure the oscillation of all solutions, especially when studying the noncanonical case. Therefore, this study aims to reduce the oscillation conditions of the fourth-order delay differential equations with a noncanonical operator. Moreover, the approach used gives more accurate results when applied to some special cases, as we explained in the examples.


Sign in / Sign up

Export Citation Format

Share Document