PARAXIAL APPROXIMATION OF THE VLASOV-MAXWELL SYSTEM: LAMINAR BEAMS

1994 ◽  
Vol 04 (02) ◽  
pp. 203-221 ◽  
Author(s):  
A. NOURI

The Vlasov-Maxwell stationary system for charged particle laminar beams is studied with a paraxial model of approximation. It leads to a degenerate evolution system, which local existence is proved. Then, using lagrangian coordinates, with sufficient conditions on the initial data and the external electromagnetic field, it is shown that global existence is possible.

1974 ◽  
Vol 76 (1) ◽  
pp. 359-367 ◽  
Author(s):  
P. A. Hogan

In this paper we derive the Lorentz-Dirac equation of motion for a charged particle moving in an external electromagnetic field. We use Maxwell's electromagnetic field equations together with the assumptions (1) that all fields are retarded and (2) that the 4-force acting on the charged particle is a Lorentz 4-force. To define the self-field on the world-line of the charge we utilize a contour integral representation for the field due to A. W. Conway. This by-passes the need to define an ‘average field’. In an appendix the case of a scalar field is briefly discussed.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Jorge A. Esquivel-Avila

We consider an abstract coupled evolution system of second order in time. For any positive value of the initial energy, in particular for high energies, we give sufficient conditions on the initial data to conclude nonexistence of global solutions. We compare our results with those in the literature and show how we improve them.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Yongqiang Xu

This paper is concerned with the fractional quasigeostrophic equation with modified dissipativity. We prove the local existence of solutions in Sobolev spaces for the general initial data and the global existence for the small initial data when1/2≤α<1.


Sign in / Sign up

Export Citation Format

Share Document