ROBUST DIRECT ADAPTIVE CONTROLLER FOR A CLASS OF NONLINEAR SYSTEMS BASED ON NEURAL NETWORKS AND FUZZY LOGIC SYSTEMS

2007 ◽  
Vol 16 (03) ◽  
pp. 553-560 ◽  
Author(s):  
MOHAMED CHEMACHEMA ◽  
KHALED BELARBI

In this paper a direct adaptive control algorithm based on a neural network NN as controller and a fuzzy inference system FIS as control error estimator is presented for a class of SISO uncertain nonlinear systems. The weights adaptation laws are based on the control error. A fuzzy inference system is used to provide an estimate of this error based on past history of the system behavior. The stability of the closed loop is studied using Lyapunov theory. Simulation results demonstrate the effectiveness of the proposed approach.

2011 ◽  
pp. 56-65
Author(s):  
Ting Wang ◽  
Fabien Gautero ◽  
Christophe Sabourin ◽  
Kurosh Madani

In this paper, we propose a control strategy for a nonholonomic robot which is based on an Adaptive Neural Fuzzy Inference System. The neuro-controller makes it possible the robot track a desired reference trajectory. After a short reminder about Adaptive Neural Fuzzy Inference System, we describe the control strategy which is used on our virtual nonholonomic robot. And finally, we give the simulations’ results where the robot have to pass into a narrow path as well as the first validation results concerning the implementation of the proposed concepts on real robot.


Author(s):  
Dragan Mlakić ◽  
Srete N Nikolovski ◽  
Goran Knežević

The losses in distribution networks have always been key elements in predicting investment, planning work, evaluating the efficiency and effectiveness of a network. This paper elaborates on the use of fuzzy logic systems in analyzing the data from a particular substation area predicting losses in the low voltage network. The data collected from the field were obtained from the Automatic Meter Reading (AMR) and Automatic Meter Management (AMM) systems. The AMR system is fully implemented in EPHZHB and integrated within the network infrastructure at secondary level substations 35/10kV and 10(20)/0.4 kV. The AMM system is partially implemented in the areas of electrical energy consumers; precisely, in accounting meters. Daily information gathered from these systems is of great value for the calculation of technical and non-technical losses. Fuzzy logic in combination with the Artificial Neural Networks implemented via the Adaptive Neuro-Fuzzy Inference System (ANFIS) is used. Finally, FIS Sugeno, FIS Mamdani and ANFIS are compared with the measured data from smart meters and presented with their errors and graphs.


2019 ◽  
Vol 44 (2) ◽  
pp. 125-141
Author(s):  
Satyabrata Sahoo ◽  
Bidyadhar Subudhi ◽  
Gayadhar Panda

This article presents a multiple adaptive neuro-fuzzy inference system-based control scheme for operation of the wind energy conversion system above the rated wind speed. By controlling the pitch angle and generator torque concurrently, the generator power and speed fluctuation can be reduced and also turbine blade stress can be minimized. The proposed neuro-fuzzy-based adaptive controller is composed of both the Takagi–Sugeno fuzzy inference system and neural network. First, a step change in wind speed and then a simulated wind speed are considered in the proposed adaptive control design. A MATLAB/Simulink model of the wind turbine system is prepared, and simulations are carried out by applying the proportional integral, fuzzy-proportional integral and the proposed adaptive controller. From the obtained results, the effectiveness of the proposed adaptive controller approach is confirmed.


Author(s):  
Dragan Mlakić ◽  
Srete N Nikolovski ◽  
Goran Knežević

The losses in distribution networks have always been key elements in predicting investment, planning work, evaluating the efficiency and effectiveness of a network. This paper elaborates on the use of fuzzy logic systems in analyzing the data from a particular substation area predicting losses in the low voltage network. The data collected from the field were obtained from the Automatic Meter Reading (AMR) and Automatic Meter Management (AMM) systems. The AMR system is fully implemented in EPHZHB and integrated within the network infrastructure at secondary level substations 35/10kV and 10(20)/0.4 kV. The AMM system is partially implemented in the areas of electrical energy consumers; precisely, in accounting meters. Daily information gathered from these systems is of great value for the calculation of technical and non-technical losses. Fuzzy logic in combination with the Artificial Neural Networks implemented via the Adaptive Neuro-Fuzzy Inference System (ANFIS) is used. Finally, FIS Sugeno, FIS Mamdani and ANFIS are compared with the measured data from smart meters and presented with their errors and graphs.


2021 ◽  
Vol 9 (2) ◽  
pp. 661-678
Author(s):  
V. Belmer Gladson, Dr. R. Balasubrimanian

Digital Watermarking has evolved as one of the latest technologies for digital media copyright protection. Watermarking of images can be done in many ways and one of the proposed algorithms for image watermarking is by utilizing Fuzzy Logic. It is similar to the concept of a Fuzzy set, each element can be defined by an ordered pair, in which one is the value and other is the membership function value. Fuzzy logic systems can explain inaccurate information and explain their decisions. Fuzzy inference system is the simplest way of performing Fuzzy Logic. In the proposed method, three Fuzzy inference models are used to generate the weighing factor for embedding the watermark and input to the Fuzzy Inference System is taken from the Human Visual System model. The Performance measures used in the Process are Peak Signal to Noise Ratio (PSNR), Structural Similarity Index (SSIM), Normalized Cross Correlation (NCC) and Bit Error Ratio (BER). The Proposed algorithm is immune to various Image Processing attacks.


2017 ◽  
Vol 3 (1) ◽  
pp. 36-48
Author(s):  
Erwan Ahmad Ardiansyah ◽  
Rina Mardiati ◽  
Afaf Fadhil

Prakiraan atau peramalan beban listrik dibutuhkan dalam menentukan jumlah listrik yang dihasilkan. Ini menentukan  agar tidak terjadi beban berlebih yang menyebabkan pemborosan atau kekurangan beban listrik yang mengakibatkan krisis listrik di konsumen. Oleh karena itu di butuhkan prakiraan atau peramalan yang tepat untuk menghasilkan energi listrik. Teknologi softcomputing dapat digunakan  sebagai metode alternatif untuk prediksi beban litrik jangka pendek salah satunya dengan metode  Adaptive Neuro Fuzzy Inference System pada penelitian tugas akhir ini. Data yang di dapat untuk mendukung penelitian ini adalah data dari APD PLN JAWA BARAT yang berisikan laporan data beban puncak bulanan penyulang area gardu induk majalaya dari januari 2011 sampai desember 2014 sebagai data acuan dan data aktual januari-desember 2015. Data kemudian dilatih menggunakan metode ANFIS pada software MATLAB versi b2010. Dari data hasil pelatihan data ANFIS kemudian dilakukan perbandingan dengan data aktual dan data metode regresi meliputi perbandingan anfis-aktual, regresi-aktual dan perbandingan anfis-regresi-aktual. Dari perbandingan disimpulkan bahwa data metode anfis lebih mendekati data aktual dengan rata-rata 1,4%, menunjukan prediksi ANFIS dapat menjadi referensi untuk peramalan beban listrik dimasa depan.


Sign in / Sign up

Export Citation Format

Share Document