scholarly journals Refined Chern–Simons theory in genus two

2020 ◽  
Vol 29 (07) ◽  
pp. 2050044 ◽  
Author(s):  
S. Arthamonov ◽  
Sh. Shakirov

Reshetikhin–Turaev (a.k.a. Chern–Simons) TQFT is a functor that associates vector spaces to two-dimensional genus [Formula: see text] surfaces and linear operators to automorphisms of surfaces. The purpose of this paper is to demonstrate that there exists a Macdonald [Formula: see text]-deformation — refinement — of these operators that preserves the defining relations of the mapping class groups beyond genus 1. For this, we explicitly construct the refined TQFT representation of the genus 2 mapping class group in the case of rank one TQFT. This is a direct generalization of the original genus 1 construction of arXiv:1105.5117 opening a question that if it extends to any genus. Our construction is built upon a [Formula: see text]-deformation of the square of [Formula: see text]-6[Formula: see text] symbol of [Formula: see text], which we define using the Macdonald version of Fourier duality. This allows to compute the refined Jones polynomial for arbitrary knots in genus 2. In contrast with genus 1, the refined Jones polynomial in genus 2 does not appear to agree with the Poincare polynomial of the triply graded HOMFLY knot homology.

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Jessica Craven ◽  
Vishnu Jejjala ◽  
Arjun Kar

Abstract We present a simple phenomenological formula which approximates the hyperbolic volume of a knot using only a single evaluation of its Jones polynomial at a root of unity. The average error is just 2.86% on the first 1.7 million knots, which represents a large improvement over previous formulas of this kind. To find the approximation formula, we use layer-wise relevance propagation to reverse engineer a black box neural network which achieves a similar average error for the same approximation task when trained on 10% of the total dataset. The particular roots of unity which appear in our analysis cannot be written as e2πi/(k+2) with integer k; therefore, the relevant Jones polynomial evaluations are not given by unknot-normalized expectation values of Wilson loop operators in conventional SU(2) Chern-Simons theory with level k. Instead, they correspond to an analytic continuation of such expectation values to fractional level. We briefly review the continuation procedure and comment on the presence of certain Lefschetz thimbles, to which our approximation formula is sensitive, in the analytically continued Chern-Simons integration cycle.


1989 ◽  
Vol 04 (24) ◽  
pp. 2409-2416 ◽  
Author(s):  
M.A. AWADA

Starting from the linear quantum loop equation of non-abelian Chern-Simons theory in three dimensions, we prove that it yields precisely and to all loop orders in perturbation theory the exact skein relation satisfied by the Jones polynomial in knot theory.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Hee-Joong Chung

Abstract We study resurgence for some 3-manifold invariants when Gℂ = SL(2, ℂ). We discuss the case of an infinite family of Seifert manifolds for general roots of unity and the case of the torus knot complement in S3. Via resurgent analysis, we see that the contribution from the abelian flat connections to the analytically continued Chern-Simons partition function contains the information of all non-abelian flat connections, so it can be regarded as a full partition function of the analytically continued Chern-Simons theory on 3-manifolds M3. In particular, this directly indicates that the homological block for the torus knot complement in S3 is an analytic continuation of the full G = SU(2) partition function, i.e. the colored Jones polynomial.


2012 ◽  
Vol 27 (15) ◽  
pp. 1250087 ◽  
Author(s):  
SI CHEN

U(1) Chern–Simons theory is quantized canonically on manifolds of the form [Formula: see text], where Σ is a closed orientable surface. In particular, we investigate the role of mapping class group of Σ in the process of quantization. We show that, by requiring the quantum states to form representation of the holonomy group and the large gauge transformation group, both of which are deformed by quantum effect, the mapping class group can be consistently represented, provided the Chern–Simons parameter k satisfies an interesting quantization condition. The representations of all the discrete groups are unique, up to an arbitrary sub-representation of the mapping class group. Also, we find a k↔1/k duality of the representations.


1999 ◽  
Vol 09 (PR10) ◽  
pp. Pr10-223-Pr10-225
Author(s):  
S. Scheidl ◽  
B. Rosenow

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Suting Zhao ◽  
Christian Northe ◽  
René Meyer

Abstract We consider symmetry-resolved entanglement entropy in AdS3/CFT2 coupled to U(1) Chern-Simons theory. We identify the holographic dual of the charged moments in the two-dimensional conformal field theory as a charged Wilson line in the bulk of AdS3, namely the Ryu-Takayanagi geodesic minimally coupled to the U(1) Chern-Simons gauge field. We identify the holonomy around the Wilson line as the Aharonov-Bohm phases which, in the two-dimensional field theory, are generated by charged U(1) vertex operators inserted at the endpoints of the entangling interval. Furthermore, we devise a new method to calculate the symmetry resolved entanglement entropy by relating the generating function for the charged moments to the amount of charge in the entangling subregion. We calculate the subregion charge from the U(1) Chern-Simons gauge field sourced by the bulk Wilson line. We use our method to derive the symmetry-resolved entanglement entropy for Poincaré patch and global AdS3, as well as for the conical defect geometries. In all three cases, the symmetry resolved entanglement entropy is determined by the length of the Ryu-Takayanagi geodesic and the Chern-Simons level k, and fulfills equipartition of entanglement. The asymptotic symmetry algebra of the bulk theory is of $$ \hat{\mathfrak{u}}{(1)}_k $$ u ̂ 1 k Kac-Moody type. Employing the $$ \hat{\mathfrak{u}}{(1)}_k $$ u ̂ 1 k Kac-Moody symmetry, we confirm our holographic results by a calculation in the dual conformal field theory.


Sign in / Sign up

Export Citation Format

Share Document