scholarly journals Resurgent analysis for some 3-manifold invariants

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Hee-Joong Chung

Abstract We study resurgence for some 3-manifold invariants when Gℂ = SL(2, ℂ). We discuss the case of an infinite family of Seifert manifolds for general roots of unity and the case of the torus knot complement in S3. Via resurgent analysis, we see that the contribution from the abelian flat connections to the analytically continued Chern-Simons partition function contains the information of all non-abelian flat connections, so it can be regarded as a full partition function of the analytically continued Chern-Simons theory on 3-manifolds M3. In particular, this directly indicates that the homological block for the torus knot complement in S3 is an analytic continuation of the full G = SU(2) partition function, i.e. the colored Jones polynomial.

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
M.Y. Avetisyan ◽  
R.L. Mkrtchyan

Abstract We present a new expression for the partition function of the refined Chern-Simons theory on S3 with an arbitrary gauge group, which is explicitly equal to 1 when the coupling constant is zero. Using this form of the partition function we show that the previously known Krefl-Schwarz representation of the partition function of the refined Chern-Simons theory on S3 can be generalized to all simply laced algebras.For all non-simply laced gauge algebras, we derive similar representations of that partition function, which makes it possible to transform it into a product of multiple sine functions aiming at the further establishment of duality with the refined topological strings.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Alfredo Pérez ◽  
Ricardo Troncoso

Abstract It has been recently argued that the averaging of free CFT’s over the Narain lattice can be holographically described through a Chern-Simons theory for U (1)D×U (1)D with a precise prescription to sum over three-dimensional handlebodies. We show that a gravitational dual of these averaged CFT’s would be provided by Einstein gravity on AdS3 with U (1)D−1× U (1)D−1 gauge fields, endowed with a precise set of boundary conditions closely related to the “soft hairy” ones. Gravitational excitations then go along diagonal SL (2, ℝ) generators, so that the asymptotic symmetries are spanned by U (1)D× U (1)D currents. The stress-energy tensor can then be geometrically seen as composite of these currents through a twisted Sugawara construction. Our boundary conditions are such that for the reduced phase space, there is a one-to-one map between the configurations in the gravitational and the purely abelian theories. The partition function in the bulk could then also be performed either from a non-abelian Chern-Simons theory for two copies of SL (2, ℝ) × U (1)D−1 generators, or formally through a path integral along the family of allowed configurations for the metric. The new boundary conditions naturally accommodate BTZ black holes, and the microscopic number of states then appears to be manifestly positive and suitably accounted for from the partition function in the bulk. The inclusion of higher spin currents through an extended twisted Sugawara construction in the context of higher spin gravity is also briefly addressed.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
David H. Wu

Abstract $$ \hat{Z} $$ Z ̂ -invariants, which can reconstruct the analytic continuation of the SU(2) Chern-Simons partition functions via Borel resummation, were discovered by GPV and have been conjectured to be a new homological invariant of 3-manifolds which can shed light onto the superconformal and topologically twisted index of 3d $$ \mathcal{N} $$ N = 2 theories proposed by GPPV. In particular, the resurgent analysis of $$ \hat{Z} $$ Z ̂ has been fruitful in discovering analytic properties of the WRT invariants. The resurgent analysis of these $$ \hat{Z} $$ Z ̂ -invariants has been performed for the cases of Σ(2, 3, 5), Σ(2, 3, 7) by GMP, Σ(2, 5, 7) by Chun, and, more recently, some additional Seifert manifolds by Chung and Kucharski, independently. In this paper, we extend and generalize the resurgent analysis of $$ \hat{Z} $$ Z ̂ on a family of Brieskorn homology spheres Σ(2, 3, 6n + 5) where n ∈ ℤ+ and 6n + 5 is a prime. By deriving $$ \hat{Z} $$ Z ̂ for Σ(2, 3, 6n + 5) according to GPPV and Hikami, we provide a formula where one can quickly compute the non-perturbative contributions to the full analytic continuation of SU(2) Chern-Simons partition function.


1989 ◽  
Vol 04 (24) ◽  
pp. 2409-2416 ◽  
Author(s):  
M.A. AWADA

Starting from the linear quantum loop equation of non-abelian Chern-Simons theory in three dimensions, we prove that it yields precisely and to all loop orders in perturbation theory the exact skein relation satisfied by the Jones polynomial in knot theory.


2004 ◽  
Vol 19 (18) ◽  
pp. 1365-1378 ◽  
Author(s):  
M. TIERZ

We study the properties of matrix models with soft confining potentials. Their precise mathematical characterization is that their weight function is not determined by its moments. We mainly rely on simple considerations based on orthogonal polynomials and the moment problem. In addition, some of these models are equivalent, by a simple mapping, to matrix models that appear in Chern–Simons theory. The models can be solved with q deformed orthogonal polynomials (Stieltjes–Wigert polynomials), and the deformation parameter turns out to be the usual q parameter in Chern–Simons theory. In this way, we give a matrix model computation of the Chern–Simons partition function on S3 and show that there are infinitely many matrix models with this partition function.


Sign in / Sign up

Export Citation Format

Share Document