scholarly journals Disentangling a deep learned volume formula

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Jessica Craven ◽  
Vishnu Jejjala ◽  
Arjun Kar

Abstract We present a simple phenomenological formula which approximates the hyperbolic volume of a knot using only a single evaluation of its Jones polynomial at a root of unity. The average error is just 2.86% on the first 1.7 million knots, which represents a large improvement over previous formulas of this kind. To find the approximation formula, we use layer-wise relevance propagation to reverse engineer a black box neural network which achieves a similar average error for the same approximation task when trained on 10% of the total dataset. The particular roots of unity which appear in our analysis cannot be written as e2πi/(k+2) with integer k; therefore, the relevant Jones polynomial evaluations are not given by unknot-normalized expectation values of Wilson loop operators in conventional SU(2) Chern-Simons theory with level k. Instead, they correspond to an analytic continuation of such expectation values to fractional level. We briefly review the continuation procedure and comment on the presence of certain Lefschetz thimbles, to which our approximation formula is sensitive, in the analytically continued Chern-Simons integration cycle.

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Aditya Dwivedi ◽  
Siddharth Dwivedi ◽  
Bhabani Prasad Mandal ◽  
Pichai Ramadevi ◽  
Vivek Kumar Singh

AbstractThe entanglement entropy of many quantum systems is difficult to compute in general. They are obtained as a limiting case of the Rényi entropy of index m, which captures the higher moments of the reduced density matrix. In this work, we study pure bipartite states associated with S3 complements of a two-component link which is a connected sum of a knot $$ \mathcal{K} $$ K and the Hopf link. For this class of links, the Chern-Simons theory provides the necessary setting to visualise the m-moment of the reduced density matrix as a three-manifold invariant Z($$ {M}_{{\mathcal{K}}_m} $$ M K m ), which is the partition function of $$ {M}_{{\mathcal{K}}_m} $$ M K m . Here $$ {M}_{{\mathcal{K}}_m} $$ M K m is a closed 3-manifold associated with the knot $$ \mathcal{K} $$ K m, where $$ \mathcal{K} $$ K m is a connected sum of m-copies of $$ \mathcal{K} $$ K (i.e., $$ \mathcal{K} $$ K #$$ \mathcal{K} $$ K . . . #$$ \mathcal{K} $$ K ) which mimics the well-known replica method. We analayse the partition functions Z($$ {M}_{{\mathcal{K}}_m} $$ M K m ) for SU(2) and SO(3) gauge groups, in the limit of the large Chern-Simons coupling k. For SU(2) group, we show that Z($$ {M}_{{\mathcal{K}}_m} $$ M K m ) can grow at most polynomially in k. On the contrary, we conjecture that Z($$ {M}_{{\mathcal{K}}_m} $$ M K m ) for SO(3) group shows an exponential growth in k, where the leading term of ln Z($$ {M}_{{\mathcal{K}}_m} $$ M K m ) is the hyperbolic volume of the knot complement S3\$$ \mathcal{K} $$ K m. We further propose that the Rényi entropies associated with SO(3) group converge to a finite value in the large k limit. We present some examples to validate our conjecture and proposal.


1990 ◽  
Vol 05 (06) ◽  
pp. 1165-1195 ◽  
Author(s):  
YONG-SHI WU ◽  
KENGO YAMAGISHI

We report on a study of the expectation values of Wilson loops in D=3 Chern-Simons theory. The general skein relations (of higher orders) are derived for these expectation values. We show that the skein relations for the Wilson loops carrying the fundamental representations of the simple Lie algebras SO(n) and Sp(n) are sufficient to determine invariants for all knots and links and that the resulting link invariants agree with Kauffman polynomials. The polynomial for an unknotted circle is identified to the formal characters of the fundamental representations of these Lie algebras.


1992 ◽  
Vol 07 (07) ◽  
pp. 601-610 ◽  
Author(s):  
PAUL A. GRIFFIN

A transverse lattice model, with one lattice dimension and two continuum dimensions, is constructed by introducing Wess-Zumino terms into the gauged (1+1)-dimensional nonlinear sigma model action of the link fields. Its continuum limit is the pure Chern-Simons gauge theory in 2+1 dimensions. The lattice model is quantized, and some simple expectation values for Wilson loops on M2×S1 are evaluated. This construction provides an explicit connection between Chern-Simons theory and the gauged Wess-Zumino-Witten model.


1989 ◽  
Vol 04 (24) ◽  
pp. 2409-2416 ◽  
Author(s):  
M.A. AWADA

Starting from the linear quantum loop equation of non-abelian Chern-Simons theory in three dimensions, we prove that it yields precisely and to all loop orders in perturbation theory the exact skein relation satisfied by the Jones polynomial in knot theory.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Hee-Joong Chung

Abstract We study resurgence for some 3-manifold invariants when Gℂ = SL(2, ℂ). We discuss the case of an infinite family of Seifert manifolds for general roots of unity and the case of the torus knot complement in S3. Via resurgent analysis, we see that the contribution from the abelian flat connections to the analytically continued Chern-Simons partition function contains the information of all non-abelian flat connections, so it can be regarded as a full partition function of the analytically continued Chern-Simons theory on 3-manifolds M3. In particular, this directly indicates that the homological block for the torus knot complement in S3 is an analytic continuation of the full G = SU(2) partition function, i.e. the colored Jones polynomial.


2020 ◽  
Vol 29 (07) ◽  
pp. 2050044 ◽  
Author(s):  
S. Arthamonov ◽  
Sh. Shakirov

Reshetikhin–Turaev (a.k.a. Chern–Simons) TQFT is a functor that associates vector spaces to two-dimensional genus [Formula: see text] surfaces and linear operators to automorphisms of surfaces. The purpose of this paper is to demonstrate that there exists a Macdonald [Formula: see text]-deformation — refinement — of these operators that preserves the defining relations of the mapping class groups beyond genus 1. For this, we explicitly construct the refined TQFT representation of the genus 2 mapping class group in the case of rank one TQFT. This is a direct generalization of the original genus 1 construction of arXiv:1105.5117 opening a question that if it extends to any genus. Our construction is built upon a [Formula: see text]-deformation of the square of [Formula: see text]-6[Formula: see text] symbol of [Formula: see text], which we define using the Macdonald version of Fourier duality. This allows to compute the refined Jones polynomial for arbitrary knots in genus 2. In contrast with genus 1, the refined Jones polynomial in genus 2 does not appear to agree with the Poincare polynomial of the triply graded HOMFLY knot homology.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Kazunobu Maruyoshi ◽  
Toshihiro Ota ◽  
Junya Yagi

Abstract We establish a correspondence between a class of Wilson-’t Hooft lines in four-dimensional $$ \mathcal{N} $$ N = 2 supersymmetric gauge theories described by circular quivers and transfer matrices constructed from dynamical L-operators for trigonometric quantum integrable systems. We compute the vacuum expectation values of the Wilson-’t Hooft lines in a twisted product space S1 × ϵ ℝ2 × ℝ by supersymmetric localization and show that they are equal to the Wigner transforms of the transfer matrices. A variant of the AGT correspondence implies an identification of the transfer matrices with Verlinde operators in Toda theory, which we also verify. We explain how these field theory setups are related to four-dimensional Chern-Simons theory via embedding into string theory and dualities.


1999 ◽  
Vol 09 (PR10) ◽  
pp. Pr10-223-Pr10-225
Author(s):  
S. Scheidl ◽  
B. Rosenow

Sign in / Sign up

Export Citation Format

Share Document