STATISTICAL ENTROPY OF KERR BLACK HOLE

2002 ◽  
Vol 11 (09) ◽  
pp. 1381-1387 ◽  
Author(s):  
REN ZHAO ◽  
LICHUN ZHANG

Using the method of quantum statistics, we directly derive the partition functions of bosonic and fermionic field in Kerr black hole with axial symmetry. Then via the improved brick-wall method for membrane model, we show that the entropy of the bosonic and fermionic field in the black hole is proportional to the area of the horizon. In our result, the stripped term and the divergent logarithmic term no longer exist. Hence the problem that the state density is divergent around the horizon doesn't exist. We also give the influence of the spining degeneracy of particles on the entropy of black hole. We offer a new simple and direct way of calculating the entropy of different complicated black holes.

2004 ◽  
Vol 01 (06) ◽  
pp. 731-737
Author(s):  
SHUANG-QI HU ◽  
ZHAO REN

By using the method of quantum statistics and via the new equation of state density motivated by the generalized uncertainty relation in the quantum gravity, we avoid the difficulty of solving wave equation, and directly derive the partition functions of bosonic and fermionic field in Toroidal black hole. Then we calculate the entropies of bosonic and fermionic field near the black hole horizon on the background of a black hole. In our result, the divergent logarithmic term and ultraviolet cutoff in the original brick-wall method by which the black hole entropy was derived no longer exist. It is shown that the entropy of the black hole is proportional to the area of the horizon. These results are similar to that in the black hole with horizon topology S2.


2001 ◽  
Vol 16 (11) ◽  
pp. 719-723 ◽  
Author(s):  
REN ZHAO ◽  
JUNFANG ZHANG ◽  
LICHUN ZHANG

Starting from the Klein–Gordon equation, we calculate the entropy of Schwarzschild–de Sitter black hole in non-thermal-equilibrium by using the improved brick-wall method-membrane model. When taking the proper cutoff in the obtained result, we obtain that both black hole's entropy and cosmic entropy are proportional to the areas of event horizon. We avoid the logarithmic term and stripped term in the original brick-wall method. It offers a new way of studying the entropy of the black hole in non-thermal-equilibrium.


2010 ◽  
Vol 25 (38) ◽  
pp. 3213-3218 ◽  
Author(s):  
WONTAE KIM ◽  
DAEHO LEE

We study the bound of the noncommutativity parameter in the noncommutative Schwarzschild black hole which is a solution of the noncommutative ISO(3, 1) Poincaré gauge group. The statistical entropy satisfying the area law in the brick wall method yields a cutoff relation which depends on the noncommutativity parameter. Requiring both the cutoff parameter and the noncommutativity parameter to be real, the noncommutativity parameter can be shown to be bounded as Θ > 8.4 × 10-2lp.


2001 ◽  
Vol 16 (39) ◽  
pp. 2495-2503 ◽  
Author(s):  
ELCIO ABDALLA ◽  
L. ALEJANDRO CORREA-BORBONET

Using the brick-wall method we compute the statistical entropy of a scalar field in a nontrivial background, in two different cases. These backgrounds are generated by four- and five-dimensional black holes with four and three U(1) charges respectively. The Bekenstein entropy formula is generally obeyed, but corrections are discussed in the latter case.


2001 ◽  
Vol 16 (23) ◽  
pp. 3793-3803 ◽  
Author(s):  
WENBIAO LIU ◽  
ZHENG ZHAO

The brick-wall method put forward by 't Hooft has contributed a great deal to the understanding and calculating of the entropy of a black hole. However, there are some drawbacks in it such as little mass approximation, neglecting logarithm terms, and taking the term including L3 as a contribution of the vacuum surrounding the black hole. Moreover, the fundamental problem is why the entropy of scalar field or Dirac field surrounding a black hole is the entropy of the black hole itself. It is well known that the event horizon is the characteristic of a black hole. The entropy calculation of a black hole should be only related to its horizon. Due to this analysis, we improve the brick-wall model by taking that the entropy of a black hole is only contributed by a thin film near the event horizon. This improvement not only gives us a satisfied result, but also avoids the drawbacks in the original brick-wall method. It is found that there is an intrinsic relation between the event horizon and the entropy. We also calculate the entropy of Schwarzschild–de Sitter space–time via the improved method, which can hardly be resolved via the original model.


2018 ◽  
Vol 33 (32) ◽  
pp. 1850185 ◽  
Author(s):  
M. A. Anacleto ◽  
Ines G. Salako ◽  
F. A. Brito ◽  
E. Passos

In this paper, we consider the metric of a (2[Formula: see text]+[Formula: see text]1)-dimensional rotating acoustic black hole in the neo-Newtonian theory to compute the Hawking temperature, and applying the quantum statistical method, we calculate the statistical entropy using a corrected state density due to the generalized uncertainty principle (GUP). In our calculations, we have shown that the obtained entropy is finite and correction terms are generated. Moreover, the computation of the entropy for this method does not present logarithmic corrections.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Kumar S. Gupta ◽  
E. Harikumar ◽  
Tajron Jurić ◽  
Stjepan Meljanac ◽  
Andjelo Samsarov

The BTZ black hole geometry is probed with a noncommutative scalar field which obeys theκ-Minkowski algebra. The entropy of the BTZ black hole is calculated using the brick wall method. The contribution of the noncommutativity to the black hole entropy is explicitly evaluated up to the first order in the deformation parameter. We also argue that such a correction to the black hole entropy can be interpreted as arising from the renormalization of the Newton’s constant due to the effects of the noncommutativity.


2013 ◽  
Vol 28 (32) ◽  
pp. 1350129
Author(s):  
HUI-HUA ZHAO ◽  
GUANG-LIANG LI ◽  
REN ZHAO ◽  
MENG-SEN MA ◽  
LI-CHUN ZHANG

Based on the works of Ghosh et al. who view the black hole entropy as the logarithm of the number of quantum states on the Quantum Isolated Horizon (QIH), the entropy of d-dimensional black hole is studied. According to the Unruh–Verlinde temperature deduced from the concept of entropic force, the statistical entropy of quantum fields under the background of d-dimensional spacetime is calculated by means of quantum statistics. The results reveal the relation between the entanglement entropy of black hole and the logarithm of the number of quantum states and display the effects of dimensions on the correction terms of the entanglement entropy.


Open Physics ◽  
2009 ◽  
Vol 7 (3) ◽  
Author(s):  
Chunyan Wang ◽  
Yuanxing Gui

AbstractWe rediscuss the entropy of a charged dilaton-axion black hole for both the asymptotically flat and non-flat cases by using the thin film brick-wall model. This improved method avoids some drawbacks in the original brick-wall method such as the small mass approximation, neglecting the logarithm term, and taking the term L 3 as the contribution of the vacuum surrounding the black hole. The entropy we obtain turns out to be proportional to the horizon area of the black hole, conforming to the Bekenstein-Hawking area-entropy formula for black holes.


Sign in / Sign up

Export Citation Format

Share Document