scholarly journals First spectroscopy of a short-hard GRB: the environment of a compact object merger

2014 ◽  
Vol 10 (S313) ◽  
pp. 398-399
Author(s):  
Antonio de Ugarte Postigo ◽  
Christina C. Thöne ◽  
Antonia Rowllinson ◽  
Rubén García Benito ◽  
Andrew J. Levan ◽  
...  

AbstractShort gamma-ray bursts (GRBs) are an extremely elusive family of cosmic explosions. They are thought to be related to the violent merger of compact objects (such as a neutron stars or black holes). Their optical counterparts were not discovered until 2005, and since then, there had been no successful spectroscopic observations. Here we present the first spectra of a short GRB, which we use to study the environment and derive implications on the progenitors of these cosmic explosions. This poster is based on the work by de Ugarte Postigoet al. (2014).

1974 ◽  
Vol 64 ◽  
pp. 194-212
Author(s):  
M. J. Rees

The physics of spherically symmetrical accretion onto a compact object is briefly reviewed. Neither neutron stars nor stellar-mass black holes are likely to be readily detectable if they are isolated and accreting from the interstellar medium. Supermassive black holes in intergalactic space may however be detectable. The effects of accretion onto compact objects in binary systems are then discussed, with reference to the phenomena observed in variable X-ray sources.


2011 ◽  
Vol 20 (10) ◽  
pp. 1797-1872 ◽  
Author(s):  
REMO RUFFINI

Gamma-ray bursts (GRBs) and supernovae (SNe) bring new perspectives to the study of neutron stars and white dwarfs, as well as opening new branches of theoretical physics and astrophysics.


2008 ◽  
Vol 680 (2) ◽  
pp. L129-L132 ◽  
Author(s):  
K. Belczynski ◽  
R. O'Shaughnessy ◽  
V. Kalogera ◽  
F. Rasio ◽  
R. E. Taam ◽  
...  

2005 ◽  
Vol 192 ◽  
pp. 543-553
Author(s):  
Abraham Loeb

SummaryGamma-Ray Bursts (GRBs) are believed to originate in compact remnants (black holes or neutron stars) of massive stars. Their high luminosities make them detectable out to the edge of the visible universe. We describe the many advantages of GRB afterglows relative to quasars as probes of the intergalactic medium during the epoch of reionization. The Swift satellite, planned for launch by the end of 2004, will likely open a new era in observations of the high redshift universe.


2004 ◽  
Vol 194 ◽  
pp. 14-17 ◽  
Author(s):  
I. F. Mirabell

AbstractGamma-ray bursts (GRBs) of long duration probably result from the core-collapse of massive stars in binary systems. After the collapse of the primary star the binary system may remain bound leaving a microquasar or ULX source as remnant. In this context, microquasars and ULXs are fossils of GRB sources and should contain physical and astrophysical clues on their GRB-source progenitors. Here I show that the identification of the birth place of microquasars can provide constrains on the progenitor stars of compact objects, and that the runaway velocity can be used to constrain the energy in the explosion of massive stars that leave neutron stars and black holes. The observations show that the neutron star binaries LS 5039, LSI +61°303 and the low-mass black hole GRO J1655-40 formed in energetic supernova explosions, whereas the black holes of larger masses (M ≥ 10 M⊙) in Cygnus X-l and GRS 1915+105 formed promptly, in the dark or in underluminous supornovao. The association with clusters of massive stars of the microquasar LSI +61°303 and the magnetars SGR 1806-20 and SGR 1900+14, suggest that very massive stars (M ≥ 50 M⊙) may -in some cases- leave neutron stars rather than black holes. The models of GRB sources of long duration have the same basic ingredients as microquasars and ULXs: compact objects with accretion disks and relativistic jets in binary systems. Therefore, the analogies between microquasars and AGN may be extended to the sources of GRBs.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 365-366
Author(s):  
Liu Jinzhong ◽  
Zhang Yu

AbstractGravitational waves (GW) are a natural consequence of Einstein's theory of gravity (general relativity), and minute distortions of space-time. Gravitational Wave Astronomy is an emerging branch of observational astronomy which aims to use GWs to collect observational data about objects such as neutron stars and black holes, about events such as supernovae and about the early universe shortly after the big bang.This field will evolve to become an established component of 21st century multi-messenger astronomy, and will stand shoulder-to-shoulder with gamma-ray, x-ray, optical, infrared and radio astronomers in exploring the cosmos. In this paper, we state a recent theoretical study on GW sources, and present the results of our studies on the field using a binary population synthesis (BPS) approach, which was designed to investigate the formation of many interesting binary-related objects, including close double white dwarfs, AM CVn stars, ultra-compact X-ray binaries(UCXBs), double neutron stars, double stellar black holes. Here we report how BPS can be used to determine the GW radiation from double compact objects.


2018 ◽  
Vol 14 (S346) ◽  
pp. 380-382
Author(s):  
Levente Borvák ◽  
Attila Mészáros ◽  
Jakub Řípa

AbstractIt is well-known that there are two types of gamma-ray bursts (GRBs): short/hard and long/soft ones, respectively. The long GRBs are coupled to supernovae, but the short ones are associated with the so called macronovae (also known as kilonovae), which can serve as the sources of gravitational waves as well. The kilonovae can arise from the merging of two neutron-stars. The neutron stars can be substituded by more massive black holes as well. Hence, the topic of gamma-ray bursts (mainly the topic of short ones) and the topic of massive binaries, are strongly connected.In this contribution, the redshifts of GRBs are studied. The surprising result - namely that the apparently fainter GRBs can be in average at smaller distances - is discussed again. In essence, the results of Mészáros et al. (2011) are studied again using newer samples of GRBs. The former result is confirmed by the newer data.


2000 ◽  
Vol 195 ◽  
pp. 339-346
Author(s):  
C. L. Fryer

Accretion disks around stellar-mass black holes are now thought to be the engines which power classical gamma-ray bursts (GRBs). These disks are formed almost exclusively in binaries, and to study the characteristics of the progenitors of these black-hole accretion disk (BHAD) GRBs, we must understand the uncertainties in binary population synthesis calculations. Kicks imparted onto nascent neutron stars and black holes are among the most misunderstood concepts of binary population synthesis. In this paper, we outline the current understanding (or lack of understanding) of these kicks and discuss their effect on BHAD GRBs and binary population synthesis as a whole.


2018 ◽  
Vol 14 (S346) ◽  
pp. 383-387
Author(s):  
Attila Mészáros ◽  
Jakub Řípa

AbstractThe separation of the gamma-ray bursts (GRBs) into short/hard and long/soft subclasses, respectively, is well supported both theoretically and observationally. The long ones are coupled to supernovae type Ib/Ic - the short ones are connected to the merging of two neutron stars, where one or even both neutron stars can be substituted by black holes. These short GRBs - as merging binaries - can also serve as the sources of gravitation waves, and are observable as the recently detected macronovae. Since 1998 there are several statistical studies suggesting the existence of more than two subgroups. There can be a subgroup having an intermediate durations; there can be a subgroup with ultra-long durations; the long/soft subgroup itself can be divided into two subclasses with respect to the luminosity of GRBs. The authors with other collaborators provided several statistical studies in this topic. This field of the GRB-diversity is briefly surveyed in this contribution.


Sign in / Sign up

Export Citation Format

Share Document