FROM VACUUM IN AN INFLATIONARY UNIVERSE TO FLUCTUATIONS IN THE MICROWAVE BACKGROUND: THE THREAD OF THE ARGUMENT

1994 ◽  
Vol 03 (01) ◽  
pp. 23-30
Author(s):  
NATHALIE DERUELLE ◽  
DAVID LANGLOIS ◽  
DAVID POLARSKI

We sketch the logics of the argument which claims that the temperature fluctuations in the microwave background radiation, observed by the COBE satellite, have originated from quantum vacuum fluctuations in an early, inflationary phase of the evolution of the universe.

1985 ◽  
Vol 19 (1) ◽  
pp. 661-664
Author(s):  
D. T. Wilkinson ◽  
F. Melchiorri

The 2.7 K microwave background radiation provides a sensitive probe of the universe in the interesting, but poorly understood, epoch around z ˜ 1000. At this time (age ~ 10 yr) the universe has cooled to T ~ 4000 K, the plasma combines, Thomson scattering ceases, and matter and blackbody radiation decouple. Subsequently, the radiation freely propagates to us, carrying the imprint of temperature fluctuations on the z ~ 1000 surface. The temperature fluctuations could have been caused by primordial density fluctuations, anisotropy in the expansion of the universe, or inhomogeneity in the initial temperature distribution; the z = 1000 surface we see was not causally connected at the time the radiation was released. Interpretation of the anisotropy measurements is complicated by the possibility that the matter may have been reionized (e.g. by massive stars), so the radiation may have been rescattered, possibly as late as z ~ 7.


2002 ◽  
Vol 11 (10) ◽  
pp. 1523-1529 ◽  
Author(s):  
SELÇUK Ş. BAYIN

Detailed observations of the temperature fluctuations in the microwave background radiation indicate that we live in an open universe. From the size of these fluctuations, it is concluded that the geometry of the universe is quite close to Euclidean. In terms Friedmann models, this implies a mass density within 10% of the critical density required for a flat universe. Observed mass can only account for 30% of this mass density. Recently, an outstanding observation revealed that cosmos is accelerating. This motivated some astronomers to explain the missing 70% as some exotic dark energy called quintessence. In this essay, we present an alternative explanation to these cosmological issues in terms of the Friedmann Thermodynamics. This model has the capability of making definite predictions about the geometry of the universe, the missing mass problem, and the acceleration of the universe in-line with the recent findings. For future observations, we also predict where this model will start differing from the quintessence models.


2017 ◽  
Vol 923 (5) ◽  
pp. 7-16
Author(s):  
A.V. Kavrayskiy

The experience of mathematical modeling of the 3D-sphere in the 4D-space and projecting it by mathematical cartography methods in the 3D-Euclidian space is presented. The problem is solved by introduction of spherical coordinates for the 3D-sphere and their transformation into the rectangular coordinates, using the mathematical cartography methods. The mathematical relationship for calculating the length distortion mp(s) of the ds linear element when projecting the 3D-sphere from the 4-dimensional Euclidian space into three-dimensional Euclidian space is derived. Numerical examples, containing the modeling of the ds small linear element by spherical coordinates of 3D-sphere, projecting this sphere into the 3D-Euclidian space and length of ds calculating by means of its projection dL and size of distortion mp(s) are solved. Based on the model of the Universe known in cosmology as the 3D-sphere, the hypothesis of connection between distortion mp(s) and the known observed effects Redshift and Microwave Background Radiation is considered.


2018 ◽  
Vol 2018 ◽  
pp. 1-15
Author(s):  
Yilin Chen ◽  
Jin Wang

We investigate the quantum vacuum and find that the fluctuations can lead to the inhomogeneous quantum vacuum. We find that the vacuum fluctuations can significantly influence the cosmological inhomogeneity, which is different from what was previously expected. By introducing the modified Green’s function, we reach a new inflationary scenario which can explain why the Universe is still expanding without slowing down. We also calculate the tunneling amplitude of the Universe based on the inhomogeneous vacuum. We find that the inhomogeneity can lead to the penetration of the Universe over the potential barrier faster than previously thought.


2005 ◽  
Vol 201 ◽  
pp. 65-70
Author(s):  
Robert F. Silverberg ◽  

We have developed a balloon-borne experiment to measure the Cosmic Microwave Background Radiation anisotropy on angular scales from ˜50° down to ˜20′. The instrument observes at frequencies between 150 and 690 GHz and will be flown on an Antarctic circumpolar long duration flight. To greatly improve the experiment performance, the front-end of the experiment is mounted on the top of the balloon. With high sensitivity, broad sky coverage, and well-characterized systematic errors, the results of this experiment can be used to strongly constrain cosmological models and probe the early stages of large-scale structure formation in the Universe.


2011 ◽  
Vol 2 ◽  
pp. 67-70
Author(s):  
Krishna Raj Adhikari

School of thought is the theory of creation (theism) and school of thought deals with the random chance of evolution (atheism) about the origin of the universe and origin of the life. In the race of proof of the hypothesis, the theism has no scientific evidence and reliable proof, on the other hand atheism based on the scientific observable evidence. The latest theory of origin of the universe by Big Bang is more believable and supported by some scientific evidence such as Doppler effect on light, Hubble observation and result of the expanding the universe and observation of the cosmic microwave background radiation(CMBR). Paper briefly discussing about the origin of the universe and the Bing Bang.Key words: Big bang; Doppler; Cosmic microwave background radiation(CMBR)The Himalayan Physics Department of Physics, PN Campus, Pokhara Nepal Physical Society, Western Regional ChapterVol.2, No.2, May, 2011Page: 67-70Uploaded Date: 1 August, 2011


2017 ◽  
Vol 26 (13) ◽  
pp. 1730023 ◽  
Author(s):  
G. K. Chakravarty ◽  
S. Mohanty ◽  
G. Lambiase

Cosmological and astrophysical observations lead to the emerging picture of a universe that is spatially flat and presently undertaking an accelerated expansion. The observations supporting this picture come from a range of measurements encompassing estimates of galaxy cluster masses, the Hubble diagram derived from type-Ia supernovae observations, the measurements of Cosmic Microwave Background radiation anisotropies, etc. The present accelerated expansion of the universe can be explained by admitting the existence of a cosmic fluid, with negative pressure. In the simplest scenario, this unknown component of the universe, the Dark Energy, is represented by the cosmological constant ([Formula: see text]), and accounts for about 70% of the global energy budget of the universe. The remaining 30% consist of a small fraction of baryons (4%) with the rest being Cold Dark Matter (CDM). The Lambda Cold Dark Matter ([Formula: see text]CDM) model, i.e. General Relativity with cosmological constant, is in good agreement with observations. It can be assumed as the first step towards a new standard cosmological model. However, despite the satisfying agreement with observations, the [Formula: see text]CDM model presents lack of congruence and shortcomings and therefore theories beyond Einstein’s General Relativity are called for. Many extensions of Einstein’s theory of gravity have been studied and proposed with various motivations like the quest for a quantum theory of gravity to extensions of anomalies in observations at the solar system, galactic and cosmological scales. These extensions include adding higher powers of Ricci curvature [Formula: see text], coupling the Ricci curvature with scalar fields and generalized functions of [Formula: see text]. In addition, when viewed from the perspective of Supergravity (SUGRA), many of these theories may originate from the same SUGRA theory, but interpreted in different frames. SUGRA therefore serves as a good framework for organizing and generalizing theories of gravity beyond General Relativity. All these theories when applied to inflation (a rapid expansion of early universe in which primordial gravitational waves might be generated and might still be detectable by the imprint they left or by the ripples that persist today) can have distinct signatures in the Cosmic Microwave Background radiation temperature and polarization anisotropies. We give a review of [Formula: see text]CDM cosmology and survey the theories of gravity beyond Einstein’s General Relativity, specially which arise from SUGRA, and study the consequences of these theories in the context of inflation and put bounds on the theories and the parameters therein from the observational experiments like PLANCK, Keck/BICEP, etc. The possibility of testing these theories in the near future in CMB observations and new data coming from colliders like the LHC, provides an unique opportunity for constructing verifiable models of particle physics and General Relativity.


Sign in / Sign up

Export Citation Format

Share Document