scholarly journals Testing theories of gravity and supergravity with inflation and observations of the cosmic microwave background

2017 ◽  
Vol 26 (13) ◽  
pp. 1730023 ◽  
Author(s):  
G. K. Chakravarty ◽  
S. Mohanty ◽  
G. Lambiase

Cosmological and astrophysical observations lead to the emerging picture of a universe that is spatially flat and presently undertaking an accelerated expansion. The observations supporting this picture come from a range of measurements encompassing estimates of galaxy cluster masses, the Hubble diagram derived from type-Ia supernovae observations, the measurements of Cosmic Microwave Background radiation anisotropies, etc. The present accelerated expansion of the universe can be explained by admitting the existence of a cosmic fluid, with negative pressure. In the simplest scenario, this unknown component of the universe, the Dark Energy, is represented by the cosmological constant ([Formula: see text]), and accounts for about 70% of the global energy budget of the universe. The remaining 30% consist of a small fraction of baryons (4%) with the rest being Cold Dark Matter (CDM). The Lambda Cold Dark Matter ([Formula: see text]CDM) model, i.e. General Relativity with cosmological constant, is in good agreement with observations. It can be assumed as the first step towards a new standard cosmological model. However, despite the satisfying agreement with observations, the [Formula: see text]CDM model presents lack of congruence and shortcomings and therefore theories beyond Einstein’s General Relativity are called for. Many extensions of Einstein’s theory of gravity have been studied and proposed with various motivations like the quest for a quantum theory of gravity to extensions of anomalies in observations at the solar system, galactic and cosmological scales. These extensions include adding higher powers of Ricci curvature [Formula: see text], coupling the Ricci curvature with scalar fields and generalized functions of [Formula: see text]. In addition, when viewed from the perspective of Supergravity (SUGRA), many of these theories may originate from the same SUGRA theory, but interpreted in different frames. SUGRA therefore serves as a good framework for organizing and generalizing theories of gravity beyond General Relativity. All these theories when applied to inflation (a rapid expansion of early universe in which primordial gravitational waves might be generated and might still be detectable by the imprint they left or by the ripples that persist today) can have distinct signatures in the Cosmic Microwave Background radiation temperature and polarization anisotropies. We give a review of [Formula: see text]CDM cosmology and survey the theories of gravity beyond Einstein’s General Relativity, specially which arise from SUGRA, and study the consequences of these theories in the context of inflation and put bounds on the theories and the parameters therein from the observational experiments like PLANCK, Keck/BICEP, etc. The possibility of testing these theories in the near future in CMB observations and new data coming from colliders like the LHC, provides an unique opportunity for constructing verifiable models of particle physics and General Relativity.

2005 ◽  
Vol 201 ◽  
pp. 65-70
Author(s):  
Robert F. Silverberg ◽  

We have developed a balloon-borne experiment to measure the Cosmic Microwave Background Radiation anisotropy on angular scales from ˜50° down to ˜20′. The instrument observes at frequencies between 150 and 690 GHz and will be flown on an Antarctic circumpolar long duration flight. To greatly improve the experiment performance, the front-end of the experiment is mounted on the top of the balloon. With high sensitivity, broad sky coverage, and well-characterized systematic errors, the results of this experiment can be used to strongly constrain cosmological models and probe the early stages of large-scale structure formation in the Universe.


2011 ◽  
Vol 2 ◽  
pp. 67-70
Author(s):  
Krishna Raj Adhikari

School of thought is the theory of creation (theism) and school of thought deals with the random chance of evolution (atheism) about the origin of the universe and origin of the life. In the race of proof of the hypothesis, the theism has no scientific evidence and reliable proof, on the other hand atheism based on the scientific observable evidence. The latest theory of origin of the universe by Big Bang is more believable and supported by some scientific evidence such as Doppler effect on light, Hubble observation and result of the expanding the universe and observation of the cosmic microwave background radiation(CMBR). Paper briefly discussing about the origin of the universe and the Bing Bang.Key words: Big bang; Doppler; Cosmic microwave background radiation(CMBR)The Himalayan Physics Department of Physics, PN Campus, Pokhara Nepal Physical Society, Western Regional ChapterVol.2, No.2, May, 2011Page: 67-70Uploaded Date: 1 August, 2011


2009 ◽  
Vol 24 (05) ◽  
pp. 369-376 ◽  
Author(s):  
LIXIN XU ◽  
JIANBO LU

In this paper, a parametrized deceleration parameter q(a) = q0+q1(1-a) is constrained by using the current cosmic observational data from type Ia Supernova (Sne Ia) and Cosmic Microwave Background Radiation (CMB). When the CMB dataset is added as a strong constraint, it is found that the 1σ error is largely reduced. The values of transition redshift zT from decelerated expansion to accelerated expansion and current deceleration parameter q0 are larger than that obtained from the case where Sne Ia dataset is used alone. With comparison to the case of Sne Ia 182 dataset used,15 it is found that the value of transition redshift is smaller than that in Sne 192 dataset case. This is the so-called dataset dependence.


2021 ◽  
Vol 3 (6) ◽  
pp. 1-6
Author(s):  
V. M. Svishch

The features of reference frame, concomitant to the cosmic microwave background, immobile relatively cosmic microwave background, are considered. It is shown that the features of reference frame, concomitant to the cosmic microwave background (CMB), are determined by its properties. Any other object in the Universe and reference frame concomitant to it, is immersed in the CMB and moves relative to the reference frame concomitant to microwave background radiation. The zero pecular velocity of the reference frame concomitant to the microwave background radiation is analogous to the zero temperature on the Kelvin scale. Time in it is most rapid in relation to the time in any other reference frame, observable and measurable in any of them. The features of time, pecular speed, relative speed of two inertial RF, stellar aberration, and Doppler effect in the reference frame concomitant to the microwave background radiation are considered. According to the determined relative velocity of the two reference systems and the peculiar velocity of the reference system with the observer, the components of their relative velocity are determined. Determining the components of the relative velocity of the reference frames with determining the synchronous time for all points at any time in the reference frame concomitant to microwave background radiation, allows us to investigate the possibility of determining the speed of light "one way" and using it to navigate vehicles in distant space. Stability of angular location of heterogeneities of CMB in reference frame concomitant to CMB, allows us to use these heterogeneities for the increase of exactness of astronomic reference frames HCRF and ICRF.


1990 ◽  
Vol 124 ◽  
pp. 645-649
Author(s):  
Tetsuya Hara ◽  
Shigeru Miyoshi

It has been reported that galaxies in large regions (~102Mpc), including some clusters of galaxies, may be streaming coherently with velocities up to 600km/sec or more with respect to the rest frame determined by the microwave background radiation.) On the other hand, it is suggested that the dominant mass component of the universe is dark matter. Because we can only speculate the motion of dark matter from the galaxy motions, much attention should be paid to the correlation of velocities between the observed galaxies and cold dark matter. So we investigate whether such coherent large-scale streaming velocities are due to dark matter or only to baryonic objects which may be formed by piling up of gases due to some explosive events.


Sign in / Sign up

Export Citation Format

Share Document