scholarly journals Conserved Currents in Supersymmetric Quantum Cosmology?

1997 ◽  
Vol 06 (05) ◽  
pp. 625-641 ◽  
Author(s):  
P. V. Moniz

In this paper we investigate whether conserved currents can be sensibly defined in super-symmetric minisuperspaces. Our analysis deals with k = +1 FRW and Bianchi class-A models. Supermatter in the form of scalar supermultiplets is included in the former. Moreover, we restrict ourselves to the first-order differential equations derived from the Lorentz and supersymmetry constraints. The "square-root" structure of N = 1 super-gravity was our motivation to contemplate this interesting research. We show that conserved currents cannot be adequately established except for some very simple scenarios. Otherwise, equations of the type ∇a Ja = 0 may only be obtained from Wheeler–DeWittlike equations, which are derived from the supersymmetric algebra of constraints. Two appendices are included. In Appendix A we describe some interesting features of quantum FRW cosmologies with complex scalar fields when supersymmetry is present. In particular, we explain how the Hartle–Hawking state can now be satisfactorily identified. In Appendix B we initiate a discussion about the retrieval of classical properties from supersymmetric quantum cosmologies.

2002 ◽  
Vol 17 (29) ◽  
pp. 1945-1953 ◽  
Author(s):  
D. BAZEIA ◽  
W. FREIRE ◽  
L. LOSANO ◽  
R. F. RIBEIRO

We deal with the presence of topological defects in models for two real scalar fields. We comment on defects hosting topological defects and search for explicit defect solutions using the trial orbit method. As we know, under certain circumstances the second-order equations of motion can be solved by solutions of first-order differential equations. In this case we show that the trial orbit method can be used very efficiently to obtain explicit solutions.


2021 ◽  
pp. 1-19
Author(s):  
Calogero Vetro ◽  
Dariusz Wardowski

We discuss a third-order differential equation, involving a general form of nonlinearity. We obtain results describing how suitable coefficient functions determine the asymptotic and (non-)oscillatory behavior of solutions. We use comparison technique with first-order differential equations together with the Kusano–Naito’s and Philos’ approaches.


Sign in / Sign up

Export Citation Format

Share Document