THE CBM EXPERIMENT AT FAIR EXPLORING THE QCD PHASE DIAGRAM AT HIGH NET BARYON DENSITIES

2007 ◽  
Vol 16 (07n08) ◽  
pp. 2419-2424 ◽  
Author(s):  
◽  
CLAUDIA HÖHNE

The Compressed Baryonic Matter (CBM) experiment at the future Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt will be a dedicated heavy-ion experiment exploring the QCD phase diagram in the region of moderate temperatures but very high baryon densities. The currently foreseen CBM detector setup, physics observables of interest, and first feasibility studies of their measurement will be presented.

2018 ◽  
Vol 171 ◽  
pp. 12002 ◽  
Author(s):  
Claudia Höhne

The CBM experiment will investigate highly compressed baryonic matter created in A+A collisions at the new FAIR research center. With a beam energy range up to 11 AGeV for the heaviest nuclei at the SIS 100 accelerator, CBM will investigate the QCD phase diagram in the intermediate range, i.e. at moderate temperatures but high net-baryon densities. This intermediate range of the QCD phase diagram is of particular interest, because a first order phase transition ending in a critical point and possibly new highdensity phases of strongly interacting matter are expected. In this range of the QCD phase diagram only exploratory measurements have been performed so far. CBM, as a next generation, high-luminosity experiment, will substantially improve our knowledge of matter created in this region of the QCD phase diagram and characterize its properties by measuring rare probes such as multi-strange hyperons, dileptons or charm, but also with event-by-event fluctuations of conserved quantities, and collective flow of identified particles. The experimental preparations with special focus on hadronic observables and strangeness is presented in terms of detector development, feasibility studies and fast track reconstruction. Preparations are progressing well such that CBM will be ready with FAIR start. As quite some detectors are ready before, they will be used as upgrades or extensions of already running experiments allowing for a rich physics program prior to FAIR start.


Open Physics ◽  
2012 ◽  
Vol 10 (6) ◽  
Author(s):  
Peter Senger

AbstractThe Compressed Baryonic Matter (CBM) experiment will be one of the major scientific pillars of the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt. The goal of the CBM research program is to explore the QCD phase diagram in the region of high baryon densities using high-energy nucleus-nucleus collisions. This includes the study of the equation-of-state of nuclear matter at high densities, and the search for the deconfinement and chiral phase transitions. The CBM detector is designed to measure both bulk observables with large acceptance and rare diagnostic probes such as charmed particles and vector mesons decaying into lepton pairs.


2020 ◽  
Vol 29 (02) ◽  
pp. 2030003
Author(s):  
Anna Senger

The mission of the Compressed Baryonic Matter (CBM) experiment at the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt is to explore the QCD phase diagram at high net baryon densities likely to exist in the core of neutron stars. The CBM detector system is designed to perform multi-differential measurements of hadrons and leptons in central gold-gold collisions at beam energies between 2 and 11 A GeV with unprecedented precision and statistics. In order to reduce the systematic errors of the lepton measurements, which generally suffer from a large combinatorial background, both electrons and muons will be measured with the same acceptance. Up to now, no di-muon measurements have been performed in heavy-ion collisions at beam energies below 158 A GeV. The main device for electron identification, a Ring Imaging Cherenkov (RICH) detector, can be replaced by a setup comprising hadron absorbers and tracking detectors for muon measurements. In order to obtain a complete picture of the reaction, it is important to measure simultaneously leptons and hadrons. This requirement is fulfilled for the RICH, which has a low material budget, and only little affects the trajectories of hadrons on their way to the Time-of-Flight (TOF) detector. In contrast, the simultaneous measurement of muons and hadrons within the same experimental acceptance poses a substantial challenge. This article reviews the simulated performance of the CBM experiment for muon identification, together with the possibility of simultaneous hadron measurements.


2015 ◽  
Vol 24 (10) ◽  
pp. 1530007 ◽  
Author(s):  
Heng-Tong Ding ◽  
Frithjof Karsch ◽  
Swagato Mukherjee

We review results from lattice QCD calculations on the thermodynamics of strong-interaction matter with emphasis on input these calculations can provide to the exploration of the phase diagram and properties of hot and dense matter created in heavy ion experiments. This review is organized in sections as follows: (1) Introduction, (2) QCD thermodynamics on the lattice, (3) QCD phase diagram at high temperature, (4) Bulk thermodynamics, (5) Fluctuations of conserved charges, (6) Transport properties, (7) Open heavy flavors and heavy quarkonia, (8) QCD in external magnetic fields, (9) Summary.


Open Physics ◽  
2012 ◽  
Vol 10 (6) ◽  
Author(s):  
Yifei Zhang ◽  
Haojie Xu ◽  
Wangmei Zha ◽  
Qun Wang

AbstractWe reproduce di-electron spectra in the region of 0 < m e+e < 4 GeV in both minimum bias and central Au+Au collisions at $\sqrt {s_{NN} } $ = 200 GeV measured by the STAR experiment. A cocktail simulation, incorporating STAR acceptance and detector responses, is able to describe the “enhancement” of the low mass region by including an in-medium modification of vector mesons and a thermal di-lepton calculation. We also predict the di-lepton mass spectra in RHIC lower energies via an extrapolation method. The evolution of Di-lepton mass spectra, effective temperature, and possible medium modifications versus colliding energies are studied to explore the QCD phase diagram.


2019 ◽  
Vol 64 (8) ◽  
pp. 665
Author(s):  
A. Ayala ◽  
M. Hentschinski ◽  
L. A. Hernández ◽  
M. Loewe ◽  
R. Zamora

Effects of the partial thermalization during the chiral symmetry restoration at the finite temperature and quark chemical potential are considered for the position of the critical end point in an effective description of the QCD phase diagram. We find that these effects cause the critical end point to be displaced toward larger values of the temperature and lower values of the quark chemical potential, as compared to the case where the system can be regarded as completely thermalized. These effects may be important for relativistic heavy ion collisions, where the number of subsystems making up the whole interaction volume can be linked to the finite number of participants in the reaction.


Sign in / Sign up

Export Citation Format

Share Document