scholarly journals GROUND STATE PROPERTIES AND BUBBLE STRUCTURE OF SYNTHESIZED SUPERHEAVY NUCLEI

2013 ◽  
Vol 22 (01) ◽  
pp. 1350001 ◽  
Author(s):  
S. K. SINGH ◽  
M. IKRAM ◽  
S. K. PATRA

We calculate the ground state properties of recently synthesized superheavy elements (SHEs) from Z = 105–118 along with the predicted proton magic Z = 120. The relativistic and nonrelativistic mean field formalisms are used to evaluate the binding energy (BE), charge radius, quadrupole deformation parameter and the density distribution of nucleons. We analyzed the stability of the nuclei based on BE and neutron to proton ratio. We also studied the bubble structure which reveals the special features of the superheavy nuclei.

2008 ◽  
Vol 17 (09) ◽  
pp. 1945-1954
Author(s):  
ZHONGZHOU REN ◽  
DINGHAN CHEN ◽  
YUQING CHEN ◽  
CHANG XU

We have investigated the ground-state properties of odd-Z superheavy isotopes with even neutron numbers in previous article (Phys. Rev. C67 064302 (2003)). In this work we extend the previous researches to the ground-state properties of odd-Z isotopic chains with odd neutron numbers. This covers the isotopic chains with Z = 109 - 115 which are current interests of experiments. The ground state properties of these odd-Z superheavy nuclei have been systematically calculated by deformed relativistic mean-field model (RMF) with two sets of force parameters TMA and NL-Z2. The theoretical results from the RMF model are compared with those from the Skyrme-Hartree-Fock model (SHF). The binding energies of two models are in good agreement with each other, but the quadrupole deformations show model dependence in some mass regions. The alpha decay energies from the two theoretical models are also compared with recent experimental data, which include three alpha decay chains of superheavy elements 115 and 113. The reasonable agreement shows the validity of the self-consistent mean-field models for superheavy mass region.


2013 ◽  
Vol 28 (16) ◽  
pp. 1350068 ◽  
Author(s):  
TUNCAY BAYRAM ◽  
A. HAKAN YILMAZ

The ground state energies, sizes and deformations of 1897 even–even nuclei with 10≤Z ≤110 have been carried out by using the Relativistic Mean Field (RMF) model. In the present calculations, the nonlinear RMF force NL3* recent refitted version of the NL3 force has been used. The BCS (Bardeen–Cooper–Schrieffer) formalism with constant gap approximation has been taken into account for pairing correlations. The predictions of RMF model for the ground state properties of some nuclei have been discussed in detail.


1997 ◽  
Vol 14 (4) ◽  
pp. 259-262 ◽  
Author(s):  
Ren Zhong-zhou ◽  
Zhu Zhi-yuan ◽  
Cai Yan-huang ◽  
Shen Yao-song ◽  
Zhan Wen-long ◽  
...  

2021 ◽  
Vol 13 (3) ◽  
pp. 733-744
Author(s):  
P. K. DEBNATH

The zero-temperature ground state properties of experimental 87Rb condensate are studied in a harmonic plus quartic trap [ V(r) =  ½mω2r2 + λr4 ]. The anharmonic parameter (λ) is slowly tuned from harmonic to anharmonic. For each choice of λ, the many-particle Schrödinger equation is solved using the potential harmonic expansion method and determines the lowest effective many-body potential. We utilize the correlated two-body basis function, which keeps all possible two-body correlations. The use of van der Waals interaction gives realistic pictures. We calculate kinetic energy, trapping potential energy, interaction energy, and total ground state energy of the condensate in this confining potential, modelled experimentally. The motivation of the present study is to investigate the crucial dependency of the properties of an interacting quantum many-body system on λ. The average size of the condensate has also been calculated to observe how the stability of repulsive condensate depends on anharmonicity. In particular, our calculation presents a clear physical picture of the repulsive condensate in an anharmonic trap.


2006 ◽  
Vol 15 (07) ◽  
pp. 1587-1599 ◽  
Author(s):  
ZHONGZHOU REN ◽  
DINGHAN CHEN ◽  
CHANG XU

Superheavy elements have provided a good test of the validity of both nuclear structure models and nuclear decay models in a large mass region. We firstly review the recent progress on theoretical studies of superheavy nuclei. Emphasis is placed on the structure and decay of superheavy nuclei. Then theoretical results of odd-odd nuclei with Z = 109 - 115 are presented and discussed. It is clearly demonstrated that there is shape coexistence for the ground state of many superheavy nuclei from different models and many superheavy nuclei are deformed. In some cases superdeformation can become the ground state of superheavy nuclei and it is important for future studies of superheavy nuclei. This can lead to the existence of low-energy isomers in the superheavy region and it plays an important role for the stability of superheavy nuclei. As α-decay and spontaneous fission plays a crucial role for identifications of new elements, we also review some typical models of α-decay half-lives and spontaneous fissions half-lives. Some new views on superheavy nuclei are presented.


2013 ◽  
Vol 22 (04) ◽  
pp. 1350018 ◽  
Author(s):  
S. K. SINGH ◽  
S. MAHAPATRO ◽  
R. N. MISHRA

We study the extremely neutron-rich nuclei for Z = 17–23, 37–40 and 60–64 regions of the periodic table by using axially deformed relativistic mean field formalism with NL3* parametrization. Based on the analysis of binding energy, two neutron separation energy, quadrupole deformation and root mean square radii, we emphasized the speciality of these considered regions which are recently predicted islands of inversion.


1996 ◽  
Vol 53 (6) ◽  
pp. 2809-2840 ◽  
Author(s):  
J. Dobaczewski ◽  
W. Nazarewicz ◽  
T. R. Werner ◽  
J. F. Berger ◽  
C. R. Chinn ◽  
...  

1998 ◽  
Vol 12 (22) ◽  
pp. 2225-2232 ◽  
Author(s):  
Xiyu Su ◽  
Hang Zheng

An electron related squeezed phonon transformation is employed to investigate the ground state properties of the strongly coupled electron–phonon system in one dimension. It has been shown that the binding energy of the polaron and the interaction between the polarons are renormalized together with the energy reducement of the electron subsystem resulted from the squeeze state of the phonon subsystem. Some relevance with the earlier variational treatments has been discussed as well.


Sign in / Sign up

Export Citation Format

Share Document