phonon subsystem
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 5)

H-INDEX

2
(FIVE YEARS 0)

2021 ◽  
Vol 2140 (1) ◽  
pp. 012028
Author(s):  
V A Kalytka ◽  
A D Mekhtiev ◽  
P Sh Madi ◽  
A V Bashirov

Abstract Upon based the finite difference methods construct the solutions for Liouville quantum kinetic equation linearized by the external field, in complex with the stationary Schrodinger equation and the Poisson operator equation, for an ensemble of non-interacting hydrogen ions (protons) migrating in the field of a crystal lattice perturbed by a variable polarizing field. The influence of the phonon subsystem is not taken into account. The equilibrium (non-balanced) proton density matrix is calculated using quantum Boltzmann statistics. The temperature spectra of dielectric losses tangent angle for hydrogen bonded crystals (HBC) in a wide temperature range (50–550 K) are calculated. At the theoretical level detected the effects of nano-crystalline states (1–10 nm) during the polarization of HBC in the region of ultra-low temperatures (4–25 K).


Author(s):  
Valery Kalytka ◽  
◽  
Alexander Aliferov ◽  
Mikhail Korovkin ◽  
Ali Mehtiyev ◽  
...  

Using the methods of quasi-classical kinetic theory, continuum electrodynamics, and non-relativistic quantum theory, we construct and study the quantum kinetic equation of proton relaxation, which, together with the Poisson operator equation describes the mechanism of diffusion tunneling transport of hydrogen ions (protons) in the potential field of a crystal lattice perturbed by a polarizing field (quantum diffusion polarization) in crystals with hydrogen bonds. Using the apparatus of the density matrix (statistical matrix), by complete quantum-mechanical averaging of the polarization operator, studies are carried out of the experimental value of the polarization of the dielectric, as a function of the parameters of the external electric field (amplitude, frequency of electromotive force) and temperature. When calculating the equilibrium density matrix for an ensemble of basic relaxers (hydrogen ions), the proton-proton and proton-phonon interactions are not taken into account, and the Hamilton operator for the phonon subsystem is assumed to be a numerical constant for a given crystal under given experimental conditions (calculated by computer method as a parameter for comparing the theory with the experiment). The influence of the phonon subsystem on the kinetics of the relaxation process is reduced to a weak spatially homogeneous force field acting on protons moving in the field of the main forces of hydrogen bonds. The Hamilton of the proton subsystem is constructed for the model of an ideal proton gas in equilibrium with the ionic subsystem of the crystal lattice, and the equilibrium statistical operator of the proton subsystem is written using the Boltzmann quantum statistics. Theoretically, the size effects are found to be manifested in shifts of the low-temperature (50–100 K) maxima of the dielectric loss angle tangent towards ultra-low temperatures (4–25 K) with a decrease in the amplitudes of the maxima by 3-4 orders of magnitude, with a reduction in the thickness of the crystal layer from 1–10 microns to 1–10 nm. The effect of anomalous displacements of low-temperature maxima, which is explained by the abnormally high quantum transparency of the potential barrier for protons (0.8-0.9) in thin films of a crystal with hydrogen bonds (1-10 nm), causes, near the temperatures of the shifted maxima of dielectric losses (4–25 K), a quasi-ferroelectric state, which is also characterized by abnormally high values of the real component of the complete dielectric permittivity (2.5–3.5millions).


2020 ◽  
pp. 1-22
Author(s):  
Mikhail Mikhailovich Demin ◽  
Olga Nikolaevna Koroleva ◽  
Anna Andreevna Aleksashkina ◽  
Vladimir Ivanovich Mazhukin

2020 ◽  
Vol 47 ◽  
pp. 137-151
Author(s):  
Mikhail Mikhailovich Demin ◽  
◽  
Olga Nikolaevna Koroleva ◽  
Anna Andreevna Aleksashkina ◽  
Vladimir Ivanovich Mazhukin ◽  
...  

2019 ◽  
Vol 20 (4) ◽  
pp. 401-405
Author(s):  
G.L. Myronchuk ◽  
O.V. Zamurujeva ◽  
I.V. Kityk

The influence of external irradiation of CO2, CO, Er:glass, Nd:YA lasers on the piezoelectric properties of the Ag2In(Ga)2Si(Ge)S(Se)6 crystals was investigated. The maximum photoinduced changes in the piezoelectric coefficient were observed after irradiation with CO2 laser. CO photoinducing bicolour beams with 5.5 μm wavelength cause at least 4 times smaller increase in piezoelectric coefficients. Therefore, it can be expected that the primary mechanisms cause the excitation of the phonon subsystem.


2006 ◽  
Vol 518 ◽  
pp. 47-50 ◽  
Author(s):  
B.S. Tošić ◽  
J.P. Šetrajčić ◽  
V.D. Sajfert ◽  
S.M. Vučenović ◽  
D.Lj. Mirjanić ◽  
...  

The Green’s functions technique suitable for broken symmetry structure analysis was developed. With the help of this new technique the phonon subsystem was analysed in ultrathin films and in cylindrical nanotubes with finite height. The most interesting results of mentioned analyses are spatial dependence of thermodynamical characteristics, existence of phonon gap and extremely low specific heat and thermal conductivity at low temperatures. This promises wide application of films and finite nanotubes in technology. The same technique was applied to investigate electron subsystems in rectangular nanostructures of all dimensions as well as in simple and full nanotubes. The most interesting conclusion of these analyses is the presence of autoreduction effect being the consequence of nonisomorphic transition configuration – momentum space. This effect represents a qualitative difference between nano and macroscopic structures. The skin effect is present in all types of nanostructures except nano-parallelepiped where antiskin effect takes place. The latter is quite understandable, since in nano-parallelepiped nodes are on boundaries.


Sign in / Sign up

Export Citation Format

Share Document