U(6)-Phonon model of nuclear collective motion

2015 ◽  
Vol 24 (05) ◽  
pp. 1550039 ◽  
Author(s):  
H. G. Ganev

The U(6)-phonon model of nuclear collective motion with the semi-direct product structure [HW(21)]U(6) is obtained as a hydrodynamic (macroscopic) limit of the fully microscopic proton–neutron symplectic model (PNSM) with Sp(12, R) dynamical group. The phonon structure of the [HW(21)]U(6) model enables it to simultaneously include the giant monopole and quadrupole, as well as dipole resonances and their coupling to the low-lying collective states. The U(6) intrinsic structure of the [HW(21)]U(6) model, from the other side, gives a framework for the simultaneous shell-model interpretation of the ground state band and the other excited low-lying collective bands. It follows then that the states of the whole nuclear Hilbert space which can be put into one-to-one correspondence with those of a 21-dimensional oscillator with an intrinsic (base) U(6) structure. The latter can be determined in such a way that it is compatible with the proton–neutron structure of the nucleus. The macroscopic limit of the Sp(12, R) algebra, therefore, provides a rigorous mechanism for implementing the unified model ideas of coupling the valence particles to the core collective degrees of freedom within a fully microscopic framework without introducing redundant variables or violating the Pauli principle.

2021 ◽  
Author(s):  
Toon Maas ◽  
Mohamad Tuffaha ◽  
Laurent Ney

<p>“A bridge has to be designed”. Every bridge is the exploration of all degrees of a freedom of a project: the context, cultural processes, technology, engineering and industrial skills. A successful bridge aims to dialogue with these degrees of freedom to achieve a delicate equilibrium, one that invites the participation of its users and emotes new perceptions for its viewers. In short, a good design “makes the bridge talk.”</p><p>Too often, the bridge, as an object, is reduced to its functionality. Matters of perceptions and experiences of the users are often not considered in the design process; they are relegated to levels of chance or treated as simple decorative matter. The longevity of infrastructure projects, in general, and bridges, in particular, highlights the deficiencies of such an approach. The framework to design bridges must include historical, cultural, and experiential dimensions. Technology and engineering are of paramount importance but cannot be considered as “an end in themselves but a means to an end”. This paper proposes to discuss three projects by Ney &amp; Partners that illustrate such a comprehensive exploration approach to footbridge design: the Poissy and Albi crossings and the Tintagel footbridge.</p><p>The footbridges of Poissy and Albi dialogue most clearly with their historical contexts, reconfiguring the relationship between old and new in the materiality and typology use. In Tintagel, legend replaces history. Becoming a metaphor for the void it crosses, the Tintagel footbridge illustrates the delicate dialogue of technology and engineering on one side and imagination and experience on the other.</p>


Frequenz ◽  
2016 ◽  
Vol 70 (9-10) ◽  
Author(s):  
Chuanming Zhu ◽  
Jin Xu ◽  
Wei Kang ◽  
Zhenxin Hu ◽  
Wen Wu

AbstractIn this paper, a miniaturized dual-band bandpass filter (DB-BPF) using embedded dual-mode resonator (DMR) with controllable bandwidths is proposed. Two passbands are generated by two sets of resonators operating at two different frequencies. One set of resonators is utilized not only as the resonant elements that yield the lower passband, but also as the feeding structures with source-load coupling to excite the other to produce the upper passband. Sufficient degrees of freedom are achieved to control the center frequencies and bandwidths of two passbands. Moreover, multiple transmission zeros (TZs) are created to improve the passband selectivity of the filter. The design of the filter has been demonstrated by the measurement. The filter features not only miniaturized circuit sizes, low insertion loss, independently controllable central frequencies, but also controllable bandwidths and TZs.


Author(s):  
Yeo Jung Yoon ◽  
Oswin G. Almeida ◽  
Aniruddha V. Shembekar ◽  
Satyandra K. Gupta

Abstract By attaching a material extrusion system to a robotic arm, we can deposit materials onto complex surfaces. Robotic manipulators can also maximize the task utility by performing other tasks such as assembly or surface polishing when they are not in use for the AM process. We present a robotic cell for embedding prefabricated components in extrusion-based AM. The robotic cell consists of two 6 degrees of freedom (DOF) robots, an extrusion system, and a gripper. One robot is used for printing a part, and the other robot takes a support role to pick and place the prefabricated component and embed it into the part being printed. After the component is embedded, AM process resumes, and the material is deposited onto the prefabricated components and previously printed layers. We illustrate the capabilities of the system by fabricating three objects.


2003 ◽  
Vol 125 (2) ◽  
pp. 302-307 ◽  
Author(s):  
Marco Carricato ◽  
Vincenzo Parenti-Castelli

This article addresses parallel manipulators with fewer than six degrees of freedom, whose use may prove valuable in those applications in which a higher mobility is uncalled for. In particular, a family of 3-dof manipulators containing only revolute joints or at the most revolute and prismatic ones is studied. Design and assembly conditions sufficient to provide the travelling platform with a pure translational motion are determined and two sub-families that fulfill the imposed constraint are found: one is already known in the literature, while the other is original. The new architecture does not exhibit rotation singularities, i.e., configurations in which the platform gains rotational degrees of freedom. A geometric interpretation of the translation singularities is provided.


1991 ◽  
Author(s):  
Joseph N. Ginocchio ◽  
Amiram Leviatan ◽  
Michael W. Kirson

2014 ◽  
Vol 907 ◽  
pp. 99-112 ◽  
Author(s):  
Jörg Avemann ◽  
Stefan Calmano ◽  
Sebastian Schmitt ◽  
Peter Groche

In forming technology, uncertainty can arouse from fluctuations in demand scenarios on one hand and in properties of semi-finished parts on the other. These technologies are usually characterized by a high productivity in mass production. However, high development efforts and investment costs for processes and machines lead to a rigid product and process spectrum. One approach to encounter these uncertainties is the introduction of flexibility into forming technologies by enlarging the number of degrees of freedom without drastically reducing productivity. The 3D Servo Press fulfils the mentioned requirements by exceeding free ram motion of conventional servo presses by two rotational ram DoFs. The adaptive control system coordinates the machine motion and controls product properties by model-based algorithms. Possibilities of this approach are demonstrated in a free bending process of a heat dissipater, resulting in uniform product quality despite variations in material, sheet thickness and desired geometry.


1988 ◽  
Vol 03 (09) ◽  
pp. 859-866 ◽  
Author(s):  
MARTIN GREINER ◽  
WERNER SCHEID ◽  
RICHARD HERRMANN

The free Schrödinger equation for multipole degrees of freedom is linearized so that energy and momentum operators appear only in first order. As an example, we demonstrate the linearization procedure for quadrupole degrees of freedom. The wave function solving this equation carries a spin. We derive the operator of the collective spin and its eigenvalues depending on multipolarity.


Author(s):  
Marco Carricato ◽  
Joseph Duffy ◽  
Vincenzo Parenti-Castelli

Abstract In this article the inverse static analysis of a two degrees of freedom planar mechanism equipped with spiral springs is presented. Such analysis aims to detect the entire set of equilibrium configurations of the mechanism once the external load is assigned. While on the one hand the presence of flexural pivots represents a novelty, on the other it extremely complicates the problem, since it brings the two state variables in the solving equations to appear as arguments of both trigonometric and linear functions. The proposed procedure eliminates one variable and leads to write two equations in one unknown only. The union of the root sets of such equations constitutes the global set of solutions of the problem. Particular attention has been reserved to the analysis of the “reliability” of the final equations: it has been sought the existence of critical situations, in which the solving equations hide solutions or yield false ones. A numerical example is provided. Also, in Appendix it is shown a particular design of the mechanism that offers computational advantages.


2013 ◽  
Vol 284-287 ◽  
pp. 973-978
Author(s):  
Chia Chun Chu

The purpose of this paper is to present a design approach based on the geometric constraints of joints for synthesizing differential mechanisms with two degrees-of-freedom, including some mechanisms with the same functions but distinct structures. The concept of virtual axes is presented. And, there are five steps in the design process. Step 1 is to decide fundamental entities by the properties of existing mechanisms and the technique of number synthesis, and 10 suitable fundamental entities of differential mechanisms are available. Step 2 is to compose geometric constraints, and 14 items are obtained. Step 3 is to compose links, and 15 items are derived. Step 4 is to assign fixed constraints for inputs or outputs, and 15 results are found. The final step is to particularize the obtained events by the properties of existing mechanisms and the structures of fundamental entities. As a result, 8 feasible results for differential mechanisms with two degrees-of-freedom and two basic loops are obtained in which 2 are existing designs and the other 6 are novel.


1973 ◽  
Vol 95 (2) ◽  
pp. 533-540 ◽  
Author(s):  
D. Kohli ◽  
A. H. Soni

The mechanisms derived from the seven-link chains with five links in their two loops and having two degrees of freedom are examined for six synthesis problems. Using displacement matrices, closed form synthesis equations are derived. It is shown that three synthesis problems may be solved using the principle of linear superposition, and closed form solutions may be obtained. The other three synthesis problems involve highly nonlinear equations and must be solved numerically.


Sign in / Sign up

Export Citation Format

Share Document