USING AN IMPROVED BEE MEMORY DIFFERENTIAL EVOLUTION ALGORITHM FOR PARAMETER ESTIMATION TO SIMULATE BIOCHEMICAL PATHWAYS

2014 ◽  
Vol 22 (01) ◽  
pp. 101-121 ◽  
Author(s):  
CHUII KHIM CHONG ◽  
MOHD SABERI MOHAMAD ◽  
SAFAAI DERIS ◽  
MOHD SHAHIR SHAMSIR ◽  
LIAN EN CHAI ◽  
...  

When analyzing a metabolic pathway in a mathematical model, it is important that the essential parameters are estimated correctly. However, this process often faces few problems like when the number of unknown parameters increase, trapping of data in the local minima, repeated exposure to bad results during the search process and occurrence of noisy data. Thus, this paper intends to present an improved bee memory differential evolution (IBMDE) algorithm to solve the mentioned problems. This is a hybrid algorithm that combines the differential evolution (DE) algorithm, the Kalman filter, artificial bee colony (ABC) algorithm, and a memory feature. The aspartate and threonine biosynthesis pathway, and cell cycle pathway are the metabolic pathways used in this paper. For three production simulation pathways, the IBMDE managed to robustly produce the estimated optimal kinetic parameter values with significantly reduced errors. Besides, it also demonstrated faster convergence time compared to the Nelder–Mead (NM), simulated annealing (SA), the genetic algorithm (GA) and DE, respectively. Most importantly, the kinetic parameters that were generated by the IBMDE have improved the production rates of desired metabolites better than other estimation algorithms. Meanwhile, the results proved that the IBMDE is a reliable estimation algorithm.

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Tae Jong Choi ◽  
Chang Wook Ahn ◽  
Jinung An

Adaptation of control parameters, such as scaling factor (F), crossover rate (CR), and population size (NP), appropriately is one of the major problems of Differential Evolution (DE) literature. Well-designed adaptive or self-adaptive parameter control method can highly improve the performance of DE. Although there are many suggestions for adapting the control parameters, it is still a challenging task to properly adapt the control parameters for problem. In this paper, we present an adaptive parameter control DE algorithm. In the proposed algorithm, each individual has its own control parameters. The control parameters of each individual are adapted based on the average parameter value of successfully evolved individuals’ parameter values by using the Cauchy distribution. Through this, the control parameters of each individual are assigned either near the average parameter value or far from that of the average parameter value which might be better parameter value for next generation. The experimental results show that the proposed algorithm is more robust than the standard DE algorithm and several state-of-the-art adaptive DE algorithms in solving various unimodal and multimodal problems.


Author(s):  
Haiqing Liu ◽  
Jinmeng Qu ◽  
Yuancheng Li

Background: As more and more renewable energy such as wind energy is connected to the power grid, the static economic dispatch in the past cannot meet its needs, so the dynamic economic dispatch of the power grid is imperative. Methods: Hence, in this paper, we proposed an Improved Differential Evolution algorithm (IDE) based on Differential Evolution algorithm (DE) and Artificial Bee Colony algorithm (ABC). Firstly, establish the dynamic economic dispatch model of wind integrated power system, in which we consider the power balance constraints as well as the generation limits of thermal units and wind farm. The minimum power generation costs are taken as the objectives of the model and the wind speed is considered to obey the Weibull distribution. After sampling from the probability distribution, the wind speed sample is converted into wind power. Secondly, we proposed the IDE algorithm which adds the local search and global search thoughts of ABC algorithm. The algorithm provides more local search opportunities for individuals with better evolution performance according to the thought of artificial bee colony algorithm to reduce the population size and improve the search performance. Results: Finally, simulations are performed by the IEEE-30 bus example containing 6 generations. By comparing the IDE with the other optimization model like ABC, DE, Particle Swarm Optimization (PSO), the experimental results show that obtained optimal objective function value and power loss are smaller than the other algorithms while the time-consuming difference is minor. The validity of the proposed method and model is also demonstrated. Conclusion: The validity of the proposed method and the proposed dispatch model is also demonstrated. The paper also provides a reference for economic dispatch integrated with wind power at the same time.


2021 ◽  
Vol 18 (3) ◽  
pp. 172988142110144
Author(s):  
Qianqian Zhang ◽  
Daqing Wang ◽  
Lifu Gao

To assess the inverse kinematics (IK) of multiple degree-of-freedom (DOF) serial manipulators, this article proposes a method for solving the IK of manipulators using an improved self-adaptive mutation differential evolution (DE) algorithm. First, based on the self-adaptive DE algorithm, a new adaptive mutation operator and adaptive scaling factor are proposed to change the control parameters and differential strategy of the DE algorithm. Then, an error-related weight coefficient of the objective function is proposed to balance the weight of the position error and orientation error in the objective function. Finally, the proposed method is verified by the benchmark function, the 6-DOF and 7-DOF serial manipulator model. Experimental results show that the improvement of the algorithm and improved objective function can significantly improve the accuracy of the IK. For the specified points and random points in the feasible region, the proportion of accuracy meeting the specified requirements is increased by 22.5% and 28.7%, respectively.


2018 ◽  
Vol 73 ◽  
pp. 13016
Author(s):  
Mara Huriga Priymasiwi ◽  
Mustafid

The management of raw material inventory is used to overcome the problems occuring especially in the food industry to achieve effectiveness, timeliness, and high service levels which are contrary to the problem of effectiveness and cost efficiency. The inventory control system is built to achieve the optimization of raw material inventory cost in the supply chain in food industry. This research represents Differential Evolution (DE) algorithm as optimization method by minimizing total inventory based on amount of raw material requirement, purchasing cost, saefty stock and reorder time. With the population size, the parameters of mutation control, crossover parameters and the number of iterations respectively 80, 0.8, 0.5, 200. With the amount of safety stock at the company 7213.95 obtained a total inventory cost decrease of 39.95%. Result indicate that the use of DE algorithm help providein efficient amount, time and cost.


2016 ◽  
Vol 2016 ◽  
pp. 1-18 ◽  
Author(s):  
Betania Hernández-Ocaña ◽  
Ma. Del Pilar Pozos-Parra ◽  
Efrén Mezura-Montes ◽  
Edgar Alfredo Portilla-Flores ◽  
Eduardo Vega-Alvarado ◽  
...  

This paper presents two-swim operators to be added to the chemotaxis process of the modified bacterial foraging optimization algorithm to solve three instances of the synthesis of four-bar planar mechanisms. One swim favors exploration while the second one promotes fine movements in the neighborhood of each bacterium. The combined effect of the new operators looks to increase the production of better solutions during the search. As a consequence, the ability of the algorithm to escape from local optimum solutions is enhanced. The algorithm is tested through four experiments and its results are compared against two BFOA-based algorithms and also against a differential evolution algorithm designed for mechanical design problems. The overall results indicate that the proposed algorithm outperforms other BFOA-based approaches and finds highly competitive mechanisms, with a single set of parameter values and with less evaluations in the first synthesis problem, with respect to those mechanisms obtained by the differential evolution algorithm, which needed a parameter fine-tuning process for each optimization problem.


Author(s):  
Ismail Yusuf ◽  
Ayong Hiendro ◽  
F. Trias Pontia Wigyarianto ◽  
Kho Hie Khwee

Differential evolution (DE) algorithm has been applied as a powerful tool to find optimum switching angles for selective harmonic elimination pulse width modulation (SHEPWM) inverters. However, the DE’s performace is very dependent on its control parameters. Conventional DE generally uses either trial and error mechanism or tuning technique to determine appropriate values of the control paramaters. The disadvantage of this process is that it is very time comsuming. In this paper, an adaptive control parameter is proposed in order to speed up the DE algorithm in optimizing SHEPWM switching angles precisely. The proposed adaptive control parameter is proven to enhance the convergence process of the DE algorithm without requiring initial guesses. The results for both negative and positive modulation index (<em>M</em>) also indicate that the proposed adaptive DE is superior to the conventional DE in generating SHEPWM switching patterns


2019 ◽  
Vol 10 (1) ◽  
pp. 1-28 ◽  
Author(s):  
Ali Wagdy Mohamed ◽  
Ali Khater Mohamed ◽  
Ehab Z. Elfeky ◽  
Mohamed Saleh

The performance of Differential Evolution is significantly affected by the mutation scheme, which attracts many researchers to develop and enhance the mutation scheme in DE. In this article, the authors introduce an enhanced DE algorithm (EDDE) that utilizes the information given by good individuals and bad individuals in the population. The new mutation scheme maintains effectively the exploration/exploitation balance. Numerical experiments are conducted on 24 test problems presented in CEC'2006, and five constrained engineering problems from the literature for verifying and analyzing the performance of EDDE. The presented algorithm showed competitiveness in some cases and superiority in other cases in terms of robustness, efficiency and quality the of the results.


2010 ◽  
Vol 108-111 ◽  
pp. 328-334 ◽  
Author(s):  
Hong Jie Fu

A novel hybrid elements exchange/electromagnetism meta-heuristic differential evolution algorithm, named EEMDE, is proposed in this paper, avoiding the premature convergence of original DE algorithm. A metric to measure the Simplification of force exerted on a point is defined as the mutation rate F in the EEMDE, which is used to get an adaptive adjustment of F. EEMDE may produce slight disturbance on the original vector for enhancing the exploring capacity and avoid the DE to the "uphill" in the wrong direction forward. Experiments demonstrate that the convergence of EEMDE is faster than DE and simulations based on some CSPs express the effectiveness, efficiency and robustness of it.


2017 ◽  
Vol 24 (s3) ◽  
pp. 65-71
Author(s):  
Jianjun Li ◽  
Ru Bo Zhang

Abstract The multi-autonomous underwater vehicle (AUV) distributed task allocation model of a contract net, which introduces an equilibrium coefficient, has been established to solve the multi-AUV distributed task allocation problem. A differential evolution quantum artificial bee colony (DEQABC) optimization algorithm is proposed to solve the multi-AUV optimal task allocation scheme. The algorithm is based on the quantum artificial bee colony algorithm, and it takes advantage of the characteristics of the differential evolution algorithm. This algorithm can remember the individual optimal solution in the population evolution and internal information sharing in groups and obtain the optimal solution through competition and cooperation among individuals in a population. Finally, a simulation experiment was performed to evaluate the distributed task allocation performance of the differential evolution quantum bee colony optimization algorithm. The simulation results demonstrate that the DEQABC algorithm converges faster than the QABC and ABC algorithms in terms of both iterations and running time. The DEQABC algorithm can effectively improve AUV distributed multi-tasking performance.


2013 ◽  
Vol 415 ◽  
pp. 349-352
Author(s):  
Hong Wei Zhao ◽  
Hong Gang Xia

Differential evolution (DE) is a population-based stochastic function minimizer (or maximizer), whose simple yet powerful and straightforward features make it very attractive for numerical optimization. However, DE is easy to trapped into local optima. In this paper, an improved differential evolution algorithm (IDE) proposed to speed the convergence rate of DE and enhance the global search of DE. The IDE employed a new mutation operation and modified crossover operation. The former can rapidly enhance the convergence of the MDE, and the latter can prevent the MDE from being trapped into the local optimum effectively. Besides, we dynamic adjust the scaling factor (F) and the crossover rate (CR), which is aimed at further improving algorithm performance. Based on several benchmark experiment simulations, the IDE has demonstrated stronger convergence and stability than original differential (DE) algorithm and other algorithms (PSO and JADE) that reported in recent literature.


Sign in / Sign up

Export Citation Format

Share Document