GLOBAL ANALYSIS OF AN EXTENDED HIV DYNAMICS MODEL WITH GENERAL INCIDENCE RATE

2015 ◽  
Vol 23 (03) ◽  
pp. 401-421
Author(s):  
AHMED ELAIW ◽  
NADA. ALMUALLEM ◽  
XIA WANG

The objective of this work is to investigate the qualitative behavior of an Human Immunodeficiency Virus (HIV) dynamics model with two types of cocirculating target cells and under the effect of anti-viral drug therapy. The model takes into account both short-lived infected cells and long-lived chronically infected cells. In the two types of target cells, the drug efficacy is assumed to be different. The incidence rate of virus infection is given by general functional response. We have derived the basic reproduction number which determines the global dynamics of the model. We have established a set of conditions which are sufficient to investigate the global stability of the equilibria of the model. The global stability analysis of the model has been established using the Lyapunov method. Numerical simulations have been performed for the model with a specific form of the incidence rate function. We have shown that the numerical and theoretical results are consistent.

2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
A. M. Elaiw ◽  
A. A. Almatrafi ◽  
A. D. Hobiny ◽  
K. Hattaf

This paper studies the global dynamics of a general pathogenic infection model with two ways of infections. The effect of antibody immune response is analyzed. We incorporate three discrete time delays and both latently infected cells and actively infected cells. The infection rate and production and clearance/death rates of the cells and pathogens are given by general functions. We determine two threshold parameters to investigate the global stability of three equilibria. We use Lyapunov method to establish the global stability. We support our theoretical results by numerical simulations.


Mathematics ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 157 ◽  
Author(s):  
A. Elaiw ◽  
E. Elnahary

This paper deals with the study of an HIV dynamics model with two target cells, macrophages and CD4 + T cells and three categories of infected cells, short-lived, long-lived and latent in order to get better insights into HIV infection within the body. The model incorporates therapeutic modalities such as reverse transcriptase inhibitors (RTIs) and protease inhibitors (PIs). The model is incorporated with distributed time delays to characterize the time between an HIV contact of an uninfected target cell and the creation of mature HIV. The effect of antibody on HIV infection is analyzed. The production and removal rates of the ten compartments of the model are given by general nonlinear functions which satisfy reasonable conditions. Nonnegativity and ultimately boundedness of the solutions are proven. Using the Lyapunov method, the global stability of the equilibria of the model is proven. Numerical simulations of the system are provided to confirm the theoretical results. We have shown that the antibodies can play a significant role in controlling the HIV infection, but it cannot clear the HIV particles from the plasma. Moreover, we have demonstrated that the intracellular time delay plays a similar role as the Highly Active Antiretroviral Therapies (HAAT) drugs in eliminating the HIV particles.


2016 ◽  
Vol 24 (04) ◽  
pp. 535-560 ◽  
Author(s):  
A. M. ELAIW ◽  
N. H. ALSHAMRANI

In this paper, we propose an [Formula: see text]-dimensional nonlinear virus dynamics model that describes the interactions of the virus, uninfected target cells, [Formula: see text]-stages of infected cells and B cells. We assume that the incidence rate of infection, the generation and removal rates of all compartments are given by general nonlinear functions. We derive two threshold parameters, the basic reproduction number, [Formula: see text] and the humoral immunity number, [Formula: see text] and establish a set of conditions on the general functions which are sufficient to determine the global dynamics of the model. Utilizing Lyapunov functions and LaSalle’s invariance principle, the global asymptotic stability of all steady states of the model is proved. Numerical simulations are conducted for specific forms of the general functions in order to illustrate the dynamical behavior.


2016 ◽  
Vol 09 (04) ◽  
pp. 1650060
Author(s):  
A. M. Ełaiw ◽  
N. H. AlShamrani

In this paper, we propose a nonlinear virus dynamics model that describes the interactions of the virus, uninfected target cells, multiple stages of infected cells and B cells and includes multiple discrete delays. We assume that the incidence rate of infection and removal rate of infected cells are given by general nonlinear functions. The model can be seen as a generalization of several humoral immunity viral infection model presented in the literature. We derive two threshold parameters and establish a set of conditions on the general functions which are sufficient to establish the existence and global stability of the three equilibria of the model. We study the global asymptotic stability of the equilibria by using Lyapunov method. We perform some numerical simulations for the model with specific forms of the general functions and show that the numerical results are consistent with the theoretical results.


2015 ◽  
Vol 2015 ◽  
pp. 1-25
Author(s):  
A. M. Elaiw ◽  
N. A. Alghamdi

We study the global stability of three HIV infection models with humoral immune response. We consider two types of infected cells: the first type is the short-lived infected cells and the second one is the long-lived chronically infected cells. In the three HIV infection models, we modeled the incidence rate by bilinear, saturation, and general forms. The models take into account two types of discrete-time delays to describe the time between the virus entering into an uninfected CD4+T cell and the emission of new active viruses. The existence and stability of all equilibria are completely established by two bifurcation parameters,R0andR1. The global asymptotic stability of the steady states has been proven using Lyapunov method. In case of the general incidence rate, we have presented a set of sufficient conditions which guarantee the global stability of model. We have presented an example and performed numerical simulations to confirm our theoretical results.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Mustafa A. Obaid ◽  
A. M. Elaiw

Two virus infection models with antibody immune response and chronically infected cells are proposed and analyzed. Bilinear incidence rate is considered in the first model, while the incidence rate is given by a saturated functional response in the second one. One main feature of these models is that it includes both short-lived infected cells and chronically infected cells. The chronically infected cells produce much smaller amounts of virus than the short-lived infected cells and die at a much slower rate. Our mathematical analysis establishes that the global dynamics of the two models are determined by two threshold parametersR0andR1. By constructing Lyapunov functions and using LaSalle's invariance principle, we have established the global asymptotic stability of all steady states of the models. We have proven that, the uninfected steady state is globally asymptotically stable (GAS) ifR0<1, the infected steady state without antibody immune response exists and it is GAS ifR1<1<R0, and the infected steady state with antibody immune response exists and it is GAS ifR1>1. We check our theorems with numerical simulation in the end.


Sign in / Sign up

Export Citation Format

Share Document